

Approximate Envy-Freeness in Graphical Cake Cutting

Sheung Man Yuen National University of Singapore **Warut Suksompong** National University of Singapore

Cake Cutting

- The problem of fairly allocating a divisible resource.
- Typical assumption: cake is represented by an interval [0, 1].
 - Appropriate when the resource is linear.
 - Insufficient when the resource is a network.
- A more general model: Graphical Cake Cutting[†]

[†] Dividing a Graphical Cake (Bei and Suksompong, 2021)

Graphical Cake Cutting

- Resource is represented by a connected graph.
- Cake lies on the edges of the graph, can be subdivided.
- Each agent receives a connected piece of the graph.

Fairness Notions

- Common fairness notions are proportionality, maximin share, and envy-freeness.
- Graphical cake cutting:
 - **Proportionality** (Bei and Suksompong, 2021)
 - Maximin share (Elkind, Segal-Halevi and Suksompong, 2021)
 - Envy-freeness (our work)
 - No agent would rather have another agent's piece of cake.

Envy-Freeness

• An envy-free allocation may not exist.

• We consider approximations of envy-freeness.

\circ α -additive-EF

- agent *i* does not envy agent *j* by an amount of more than $0 \le \alpha \le 1$.
- **α-EF**
 - agent *i* does not envy agent *j* by a factor of more than $\alpha \ge 1$.
- **Proposition:** α -EF implies $(\alpha 1)/(\alpha + 1)$ -additive-EF.

Our Results

	General graphs	Star graphs
Non-identical valuations	1/2-additive-EF	(3 + ε)-EF
Identical valuations	(2 + ε)-EF	2-EF

• Our work presents efficient algorithms for computing these allocations.

General Graphs, Non-Identical Valuations

- **Theorem:** There exists a 1/2-additive-EF allocation for a general graph.
- **Proof sketch:** Generalize ideas from interval cake cutting.[†]
 - Find a bundle worth less than 1/2 to every agent and at least 1/4 to some agent; allocate to the agent who values it at least 1/4.
 - To find this bundle, use the DIVIDE algorithm[‡] with threshold 1/4.
 - Repeat the procedure with the remaining graph and remaining agents.
 - This gives a 1/2-additive-EF allocation.

	General graphs	Star graphs
Non-identical valuations	1/2-additive-EF	(3 + ε)-EF
Identical valuations	(2 + ε)-EF	2-EF

[†] Contiguous Cake Cutting: Hardness Results and Approximation Algorithms (Goldberg, Hollender, and Suksompong, 2020) [‡] Dividing a Graphical Cake (Bei and Suksompong, 2021)

Star Graphs, Non-Identical Valuations

- **Theorem:** There exists a $(3 + \varepsilon)$ -EF allocation for a star graph.
- **Proof sketch:** Generalize ideas from interval cake cutting.[†]

• This gives a $(3 + \varepsilon)$ -EF allocation.

	General graphs	Star graphs
Non-identical valuations	1/2-additive-EF	(3 + ε)-EF
Identical valuations	(2 + ε)-EF	2-EF

[†] Fair and Efficient Cake Division with Connected Pieces (Arunachaleswaran, Barman, Kumar, and Rathi, 2019)

General Graphs, Identical Valuations

- **Theorem:** There exists a $(2 + \varepsilon)$ -EF allocation for a general graph and agents with identical valuations.
- **Proof sketch:** Recall that we used a threshold of 1/4 previously.
 - Use an adaptive threshold of $\frac{1}{2}(\frac{2i}{2n-1} \sum_{j=1}^{i-1} \mu(A_j))$ for the *i*th agent; this gives a 4-EF allocation.
 - Next, generalize ideas from partitioning indivisible edges of a graph.[†]
 - Start with a 4-EF allocation and adjust adjacent bundles repeatedly; this gives a $(2 + \varepsilon)$ -EF allocation.

	General graphs	Star graphs
Non-identical valuations	1/2-additive-EF	(3 + ε)-EF
Identical valuations	(2 + ε)-EF	2-EF

[†] A Tight Bound on the Min-Ratio Edge-Partitioning Problem of a Tree (Chu, Wu, Wang, and Chao, 2010)

Star Graphs, Identical Valuations

- **Theorem:** There exists a 2-EF allocation for a star graph and agents with identical valuations.
- **Proof sketch:** Use a bag-filling algorithm.

• This gives a 2-EF allocation.

	General graphs	Star graphs
Non-identical valuations	1/2-additive-EF	(3 + ε)-EF
Identical valuations	(2 + ε)-EF	2-EF

Conclusion

• Summary

Ο

	General graphs	Star graphs
Non-identical valuations	1/2-additive-EF	(3 + ε)-EF
Identical valuations	(2 + ε)-EF	2-EF

- The bounds for identical valuations are tight due to prior work.
- **Open question:** Is an α -EF allocation guaranteed to exist for general graphs and non-identical valuations, for some constant $\alpha \ge 1$?
- Omitted results
 - Settings where agents can receive a small number of connected pieces: use the notion of path similarity number.

Thank you!

Questions?