FAIR DIVISION OF RESOURCES:
FROM INDIVISIBLE GOODS TO CAKES

YUEN SHEUNG MAN
(MComp, NUS; B.Sc.(Hons), NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2024

Supervisor:

Assistant Professor Warut Suksompong

Examiners:
Associate Professor Jonathan Mark Scarlett

Associate Professor Arnab Bhattacharyya

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its
entirety. I have duly acknowledged all the sources of information which have been used in

the thesis.

This thesis has also not been submitted for any degree in any university previously.

Yuen Sheung Man
25 November 2024

Summary

In fair division, the goal is to divide a set of resources amongst several agents so that ev-
ery agent receives what they perceive to be a fair share. This is often a challenging task.
This thesis aims to provide more insights into fair division by studying theories, structures,
algorithms, and complexities related to fair allocations in various settings, thereby revealing
possibilities and impossibilities within the field.

In Part I, we study instances wherein the goods are indivisible. In the allocation of indi-
visible goods, the maximum Nash welfare rule has been characterized as the only rule within
the class of additive welfarist rules that guarantees envy-freeness up to one good (EF1). We
extend this characterization to the class of all welfarist rules. We then examine the structure
of EF1 allocations by studying their reachability when agents are allowed to exchange goods
sequentially. We investigate whether it is always possible to reach an EF1 allocation from
another EF1 allocation via a sequence of exchanges such that every intermediate allocation
is also EF1. In circumstances where this can be done, we investigate whether there is also an
optimal sequence of such exchanges. Another problem that we study is the reformation of an
unfair allocation into an EF1 allocation via such sequences. We investigate the complexity
of deciding whether this reformation process is possible and the complexity of computing the
number of exchanges needed whenever this is possible. Furthermore, we provide bounds to
the number of exchanges required in the reformation process in the worst case.

In Part II, we study instances wherein the goods are divisible. We characterize the
existence of a connected strongly-proportional allocation of an interval cake. We devise
algorithms to determine this condition and to compute such an allocation if it exists. This
problem is investigated along different axes, including whether the agents are hungry, whether
the agents have different entitlements, and whether the agents are required to have a small
positive value more than their entitlements. We then study the problem wherein the resource
is in the form of a graph, also known as a graphical cake. Unlike for the interval cake, a
connected envy-free allocation is not guaranteed to exist for a graphical cake. We devise
efficient algorithms to compute connected allocations with low envy in a graphical cake. We

also derive guarantees when each agent can receive more than one connected piece.

i

Acknowledgements

I would firstly like to express my deepest gratitude to my advisor, Warut Suksompong, for
his guidance throughout my PhD journey. Warut has outperformed his role as an advisor.
Whenever I had run out of research ideas, he was always able to offer me slices of his exper-
tise and guide me towards appropriate research topics. Yet, he encouraged me to collaborate
with others and gave me the opportunity to pursue my own research interests. His thorough
feedback and high standards constantly challenged me to make precise cuts in refining argu-
ments in our research work, while his regular check-ins and unwavering belief in my potential
kept me focused and motivated. I have learnt so much about the craft of research from his
excellent mentoring and I will always be grateful for his patience and dedication.

I would next like to thank my collaborators: Ayumi Igarashi, Naoyuki Kamiyama, Erel
Segal-Halevi, Zsuzsanna Janké, and Attila Jo6. A significant portion of this thesis is based
on collaborations with them, and this thesis would not have been possible without their
contributions. In addition to enriching my research and academic journey, their desire to
participate in thought-provoking debates has promoted a deeper understanding of the field.
I particularly enjoyed the mutual exchange of ideas and the collective effort to make each
piece of work possible, making research seem like a piece of cake. They have taught me a lot,
and I am grateful for the opportunity to have worked with these talented experts.

I would like to extend my appreciation to several others who have also contributed sig-
nificantly to my PhD journey. Jonathan Scarlett and Arnab Bhattacharyya, members of
my Thesis Advisory Committee, sharpened my thoughts through useful feedback for earlier
drafts of this thesis, thereby allowing me to enhance the clarity and coherence of this work.
I had the opportunity to be mentored by Bryan Kian Hsiang Low in the early part of my
PhD programme and by Arnab and Limsoon Wong during their lab rotations in my first
semester—these opportunities equipped me with the recipe for success as a beginning re-
searcher. Nicholas Teh played a huge role in my PhD journey by connecting me with other
researchers at various conferences; I would also like to thank him for proofreading my thesis.
I benefited from enriching academic discussions with other PhD students on various projects,
including Flint Xiaofeng Fan, Ruixi Zhang, Rachael Hwee Ling Sim, and Karen Frilya Celine.
As the icing on the cake, Yuen Jien Soo (“Uncle Soo0”) offered constant encouragement and
guidance on teaching-related matters when I was a Graduate Tutor, and Keng Hwee Ng made
me feel welcome from the very first day of my PhD journey. I also appreciate the support
from members in Bryan’s lab group and the people in the i* and COMI offices who made my
journey more enjoyable and fulfilling.

I am thankful for the financial support provided by the NUS School of Computing via

iii

the Graduate Tutorship programme during the first three years of my PhD studies and the
Ministry of Education via a research grant subsequently.

Most importantly, I would like to thank my family for their unwavering support through-
out my PhD studies. They have been extremely supportive of my decision to pursue my
interests. In particular, thank you to Wen Yi for the countless sacrifices made, from adjust-
ing to my schedule to providing emotional support throughout; I would certainly not have

made the cut without you!

iv

Contents

Declaration i
Summary ii
Acknowledgements iii
Contents v
List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Resources 2
1.2 Measure of Value 3

1.3 Fairness o 4
1.4 Roadmap of This Thesis 6

1.5 Bibliographic Notes 7

2 Preliminaries 9
2.1 General Setting 9
2.2 Indivisible Goods 10
2.3 Divisible Goods 11

I Indivisible Goods 14
3 Extending the Characterization of Maximum Nash Welfare 15
3.1 Introductiono 15
3.2 Preliminaries 16
3.3 Result for Continuous Welfare Functions 16
3.4 Result for Non-Continuous Welfare Functions 19
3.5 Conclusion 22

4 Reachability of Fair Allocations via Sequential Exchanges 23
4.1 Introduction 23
4.1.1 Our Results 24

CONTENTS CONTENTS

II

4.2 Preliminaries e 25
4.3 Two Agents 25
4.4 Three or More Agents 30
4.4.1 General Utilitieso 34
4.4.2 Identical Binary Utilities 35
4.4.3 Binary Utilities o 37
4.4.4 Identical Utilities 38

4.5 Conclusion 40
Reforming an Unfair Allocation by Exchanging Goods 41
5.1 Introduction 41
5.1.1 Our Results 42
5.1.2 Related Work 43

5.2 Preliminaries 44
5.3 Reformability of Allocations 45
5.3.1 Two Agents 46
5.3.2 Constant Number of Agents 50
5.3.3 General Number of Agents. 52

5.4 Optimal Number of Exchanges 55
54.1 Two Agents 55
5.4.2 Constant Number of Agents, 58
5.4.3 General Number of Agents. 61

5.5 Worst-Case Bounds 63
5.5.1 Identical Binary Utilities, 64
5.5.2 General Utilities 65

5.6 Conclusion e 69
Divisible Goods 70
On Connected Strongly-Proportional Cake-Cutting 71
6.1 Introduction 71
6.1.1 OurResults 72
6.1.2 Further Related Work 74

6.2 Preliminaries 74
6.3 Hungry Agents 75
6.3.1 Equal Entitlements o L 76
6.3.2 Possibly Unequal Entitlements 80

6.4 General Agents 81
6.4.1 Upper Bound 85
6.4.2 Lower Bound 88

6.5 Stronger than Strongly-Proportional 91
6.6 Pies e 95

vi

CONTENTS CONTENTS
6.7 Conclusion e 96

7 Approximate Envy-Freeness in Graphical Cake Cutting 97
7.1 Introduction 97
711 OurResults 98

7.1.2 Further Related Work 99

7.2 Preliminaries 100
7.3 Possibly Non-Identical Valuations 101
7.3.1 General Graphs oo 101

7.3.2 Star Graphs 103

7.4 Identical Valuations 108
741 4-EF 109

742 (24€)-EF 111

7.4.3 Star Graphs 118

7.5 Beyond One Connected Piece, 119
7.6 Conclusion e 122
Bibliography 123
A NP-Hardness of Directed Triangle Partition in Chapter 4 132
B Other Results from Chapter 5 137
B.1 Worst-Case Bounds for Identical Utilities 137
B.2 Beneficial Exchanges 144

C Appendix for Chapter 6 148
C.1 Left-Marks and Right-Marks 148
C.2 Proportionality 149

D The Divide Algorithm in Chapter 7 151

vil

List of Figures

1.1

4.1
4.2

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5

Al
A2
A3
A4

Illustration of the division of five goods amongst five agents 4
Ilustration of possible partitions of a graph into directed circuits 31
The exchange of goods g, and g, 32
Illustration in the proof of Lemma 6.3.1 75
Iustration in the proof of Theorem 6.3.2 7
Construction of the cake used in the proof of Theorem 6.4.6 89
Construction of the cake used in the proof of Theorem 6.5.2 92
Star graphs L 98
[lustration of the algorithm for star graphs 103
Ilustration of the algorithm for star graphs and identical valuations 118
Ilustration of how to convert a star graph into a path graph 120
Illustration of how to convert a tree into a path graph 121
The graph Hy, a T-triangle, and an F-triangle. 133
A T-patch and an F-patch 133
An F-F-F join e 134
An F-F join and an F-T join 135

viil

List of Tables

4.1

5.1
5.2

6.1

7.1

Overview of results on reachability of EF1 allocations 25
Overview of results for REFORMABILITY 42
Overview of results for OPTIMAL EXCHANGES 43
Overview of results on connected strongly-proportional allocations 73
Overview of results on approximate envy-freeness in graphical cake cutting . . 99

ix

Chapter 1

Introduction

Fair division is the problem of dividing a set of resources amongst several competing parties,
each of whom has an interest in it, such that every party receives a share of the resources
which they think is fair. This problem is ubiquitous in society, with applications ranging from
small-scale ones like divorce settlement, division of inheritance, and university course allo-
cation, to large-scale ones like airspace management, frequency allocation, and international
dispute resolution (Brams and Taylor, 1996; Moulin, 2003; Thomson, 2016). The parties
amongst whom the resources are to be divided could be individuals, groups of individuals,
organizations, or even sovereignties, depending on the application. For simplicity, we shall
henceforth refer to them as agents.

In fair division, agents agree on mechanisms to reconcile their interests; such mechanisms
produce allocations with certain fairness properties. A common example is the “divide-and-
choose” procedure for the allocation of a cake between two agents: one agent cuts the cake
into two equal parts and allows the other agent to choose a part first, thereby ensuring that
it is fair for both agents.! This is in contrast to the use of arbitrators, who may decide
on allocations without taking the agents’ interests into account. For example, the division
of matrimonial assets in a contested divorce is often left to the court to decide, and may
sometimes not be fair to one of the parties due to legal reasons.

Fair division is often challenging for a variety of reasons. The value of the resources in
contention may not be uniformly distributed among the resources, making some parts more
valuable to some agents than other parts. For example, the airspace around the locality of
an airshow is more valuable to the aircrafts exhibited at the airshow during that time and
should definitely be prioritized for these aircrafts, and a challenge is to still allocate enough
airspace to other non-participating aircrafts in the region. Additionally, the nature of the
resources may hinder the parties from receiving fair shares. For example, if there are two
children sharing a toy, then only one child can play with the toy at a time, making it unfair
to the other child. Besides, there are many different notions of fairness, making it difficult to
ascertain whether an allocation is really fair.

While its formal study has a long and storied history dating back to the work of Steinhaus

1One may argue that it is not as fair for the first agent since they only get exactly 50%, while the second
agent may potentially get more than 50%. We refer the reader to Brams and Taylor (1996) for a more
extensive discussion on this.

Chapter 1: Introduction

(1948), fair division remains a highly active research area at the intersection of mathematics,
economics, and computer science, and has drawn great interest from researchers in various
disciplines over the past few decades (Dubins and Spanier, 1961; Stromquist, 1980; Brams
and Taylor, 1996; Walsh, 2020). In particular, researchers have recently drawn connections
between fair division and various other fields such as graph theory (Bei et al., 2022; Bilo
et al., 2022), extremal combinatorics (Berendsohn et al., 2022; Akrami et al., 2023), two-sided
matching (Freeman et al., 2021; Igarashi et al., 2023), and differential privacy (Manurangsi
and Suksompong, 2023), to name but a few. In practice, the theory developed in this area has
been applied to several tools for fairly allocating resources, including Spliddit (Goldman and
Procaccia, 2014), Course Match (Budish et al., 2017), Kajibuntan (Igarashi and Yokoyama,
2023), and Fast & Fair (Han and Suksompong, 2024).

In this thesis, we focus on the mathematical and the computational aspects of fair divi-
sion. We develop theories related to fair allocations, such as the properties of welfarist rules
that guarantee allocations satisfying a fairness notion called envy-freeness up to one good
(EF1) in Chapter 3. We examine structures of fair allocations, such as the structure of EF1
allocations and how these allocations can be reached via sequential exchanging of goods in
Chapters 4 and 5. We design algorithms to compute examples of fair allocations, such as
strongly-proportional allocations of cakes in Chapter 6 and approximate envy-free allocations
of graphical cakes in Chapter 7. We also study complexities in various fair division settings,
such as the reachability of EF1 allocations in Chapter 4, the reformability of allocations in

Chapter 5, and the existence of strongly-proportional allocations of cakes in Chapter 6.

1.1 Resources

While the nature of the resources depends on the application, these resources can broadly
be classified along a few dimensions. Along one of the dimensions is the desirability of the
resources. Resources that are desirable by every agent are known as goods, while resources
that are undesirable by every agent are known as chores. A deceased’s assets are desired by
the beneficiaries, and fairly allocating these assets to the beneficiaries may be a challenging
problem. On the other hand, household chores are tasks that are undesirable, but yet these
need to be distributed amongst the family members fairly. Suksompong (2021) and Guo et al.
(2023) provide surveys on fair division of goods and of chores respectively. In this thesis, we
focus on goods, which are resources that agents either prefer having, or are indifferent towards
having.

Resources can also be classified according to their structure. Goods that must be allocated
wholly to an agent are called indivisible goods. An example of an indivisible good is a car,
which must be allocated as a whole to an agent, and it would not be feasible to break the car
up into smaller parts to be allocated to multiple agents without losing the utility of the car.
Indivisible goods are the focus of Part I of this thesis. On the other hand, goods that can be
divided into smaller parts are called divisible goods. For example, when agents dispute over
a piece of land, the land can possibly be divided such that each agent receives a fair share

of the land. A cake—usually modeled as the unit interval [0, 1]—is an example of a divisible

Chapter 1: Introduction

good, and the problem of fairly allocating it is known as cake-cutting. Divisible goods are
the focus of Part II of this thesis. In particular, we focus on dividing a cake in Chapter 6
and dividing a graphical cake—wherein the goods are represented by a connected graph—in
Chapter 7.

Beyond the scope of this thesis, a line of work studies the division of a mix of indivisible
and /or divisible goods and/or chores (Bei et al., 2021; Bhaskar et al., 2021; Aziz et al., 2022;
Liu et al., 2024).

1.2 Measure of Value

In order to quantify fairness, agents must be able to assign value to the goods that they
receive. Could there be a way for the agents to agree on the value assigned to each good?
According to the subjective theory of value, the value of a good cannot be fully determined
by the inherent properties of the good, and different agents may assign different values to the
same good (Menger, 1871). Indeed, suppose that a group of friends rents a house and wishes
to assign the rooms in the house to each of them fairly, perhaps by getting the person with
the best room to pay the largest proportion of the rent. One of them may prefer a room
at the highest floor due to its good view, while another may desire a room at the middle
floor with the easiest access to the bathroom, and yet a third person may like a room at the
basement due to its large area. Different people have different preferences, and it would be
difficult for them to agree on the value of each room. Since there is no objective measure of
value, each agent must therefore have their own subjective measure of value, called a utility
function. A utility function assigns a value, or utility, to each set of goods, and this value
increases as more goods are added to the set.

An agent’s value for a good may also depend on the interaction between the goods that
the agent already has. A person receiving a tank of fuel may not have much use for it, but its
value greatly increases if the agent also has a car, since the fuel can be used to power the car.
In this case, cars and fuel are complementary goods, which are goods that are typically used
together and enhance each other’s value. On the other hand, the value of a car to a person
decreases if that person already has a motorcycle, since that person would typically only use
one of them as a mode of transport. In this case, cars and motorcycles are substitute goods,
which are goods that have similar functions and decrease each other’s value. The presence of
complementary or substitute goods makes the utility function of an agent more complicated.
Instead, we shall focus only on independent goods—goods whose values are not affected by
the presence of other goods. As a result, an agent’s utility of a set of goods is simply the sum
of the utility of each of the goods in the set; this property of the utility function is known as
additivity.?

We also assume that agents’ measures of value are not influenced by other agents. In
other words, every agent’s utility function does not depend on the presence of other agents

or on other agents’ utility functions.?

2Non-additive utilities have also been studied in fair division (Stromquist, 1980; Su, 1999; Oh et al., 2021;
Ghodsi et al., 2022; Amanatidis et al., 2023b).
3By contrast, some works assume the presence of externalities (Branzei et al., 2013; Aziz et al., 2023).

Chapter 1: Introduction

1.3 Fairness

Given an allocation of the goods amongst the agents, we use the agents’ utility functions to
determine if the allocation is fair. Some fairness notions involve comparing an agent’s bundle
with the entire set of goods. An example is mazimin-share-fairness. An agent is said to
receive their mazimin share if the utility of their assigned bundle is at least the utility of
some bundle in another allocation where the agent divides all the goods as evenly as possible
with respect to their own utility function. Another fairness notion is proportionality, which
requires each of the n agents to receive a bundle with utility at least 1/n of the utility of all
the goods. Proportionality is a stronger fairness notion than maximin-share-fairness, since
an agent who receives a bundle worth at least 1/n of all the goods is guaranteed to receive
at least their maximin share.

At first glance, it may seem that maximin-share-fairness and proportionality are reason-
able fairness notions. Indeed, in cake-cutting, a proportional (and hence maximin-share-fair)
allocation always exists, and there is a simple algorithm to get such an allocation (Steinhaus,
1948). However, a proportional allocation may not always exist when allocating indivisible
goods, even for two agents. In the example of dividing a toy between two children, the toy,
being an indivisible good, can only be allocated to one of the children, making the allocation
not proportional for the other child. In fact, computing whether a proportional allocation
exists for two agents is NP-hard.* Even a maximin-share-fair allocation may not exist for
three or more agents (Kurokawa et al., 2018), and the best result so far only guarantees each

agent slightly more than 3/4 of their maximin share (Akrami and Garg, 2024).

good 1 good 2 good 3 good4 goodbH
agent 1 100 400 0 0 0
agent 2 0 100 400 0 0
agent 3 0 0 100 400 0
agent 4 0 0 0 100 400
agent 5 400 0 0 0 100

Figure 1.1: Ilustration of the division of five goods amongst five agents. Each number
represents the utility of the good to that particular agent. An allocation that gives good i to
agent ¢ is proportional, but not envy-free.

Another issue is that these two fairness notions only compare each agent’s bundle with
all the goods, rather than with other agents’ bundles. This gives a myopic view on fairness.
For example, suppose that there are five agents and five goods, and that each agent i (for
i from 1 to 5) deems that good i has utility 100 and good i + 1 has utility 400 (good 6 is
defined to be the same as good 1); the rest of the goods have zero utility to agent i—see
Figure 1.1 for an illustration. An allocation that gives good i to agent i is proportional (and
hence maximin-share-fair) since agent i receives a good with utility 100, which is 1/5 of 500,
the utility of all the goods. However, from agent ¢’s perspective, agent ¢ + 1 receives a utility
of 400, making the allocation extremely unbalanced against agent i’s favour. In this case,

agent ¢ envies agent i + 1. A better allocation would be to give good i + 1 to agent ¢ (for

4Via a reduction from PARTITION.

Chapter 1: Introduction

every i) so that every agent receives a utility of 400, and thus envies nobody. We can see
that while the aforementioned fairness notions are reasonable, they may induce high envy
amongst agents.

In order to mitigate this problem, we consider a fairness notion, called enwvy-freeness,
that compares agents’ bundles with each other. An allocation is envy-free if every agent
would rather have their own allocated bundle than another agent’s bundle based on their
own measure of value. Envy-freeness remains one of the strongest notions of fairness—it can
be shown that envy-freeness implies both proportionality and maximin-share-fairness.

However, envy-freeness may not always be possible to achieve. For two agents, proportion-
ality and envy-freeness are equivalent, and we saw in an earlier example that a proportional
allocation of one indivisible good cannot be attained, so envy-freeness also cannot be attained
in this same example. For a cake, it turns out that an envy-free allocation wherein each agent
receives a contiguous piece always exists (Stromquist, 1980), but no finite algorithm can guar-
antee to find this allocation for three or more agents (Stromquist, 2008). Even without the
contiguity requirement, the best known algorithm requires O(n 11 6) queries® for n agents
(Aziz and Mackenzie, 2016), which is a huge number for large n.

Having discussed some of the issues with common fairness notions, we consider variants
of these notions in this thesis. The variants depend on the structure of the goods. For
indivisible goods, a prominent fairness notion in the literature is EF'1. In an EF1 allocation
of the goods, an agent is allowed to envy another agent only if there exists a good in the
latter agent’s bundle whose removal would eliminate this envy. A simple mechanism to get
an EF1 allocation is the round-robin protocol, whereby agents take turns choosing their most
valuable good among all the goods that have not been chosen yet. Even for non-additive
utility functions, it is well-known that an EF1 allocation always exists, and can moreover be
computed in polynomial time (Lipton et al., 2004; Budish, 2011). The simplicity, guaranteed
existence, and efficient computation makes EF1 a particularly attractive fairness notion. For
further discussion of EF1, we refer to the survey by Amanatidis et al. (2023a). We focus on
the fairness notion of EF1 in Chapters 3 to 5.

When allocating a divisible good, EF1 would be too extreme since it would involve elim-
inating the entire good when comparing envy, when the good can be divided into smaller
parts to be allocated to different agents instead. As such, we consider approximations of the
envy-freeness notion. We consider, separately, envy-freeness up to a multiplicative factor of a
parameter a (a-EF') and envy-freeness up to a constant value of a parameter « (a-additive-
EF). In an o-EF allocation, an agent would not envy another agent up to a factor of o based
on the former agent’s utility, whereas in an a-additive-EF allocation, an agent would not
envy another agent up to difference of a. We focus on a-EF and a-additive-EF allocations
in Chapter 7. Besides envy-freeness, we also consider a stronger version of proportionality,
known as strong-proportionality, where each of the n agents receives a bundle with utility
strictly more than 1/n of the utility of all the goods. Strong-proportionality is the focus of
Chapter 6.

5We use Knuth’s up-arrow notation here.

Chapter 1: Introduction

1.4 Roadmap of This Thesis

This thesis is divided into two main parts. Part I (Chapters 3 to 5) is on fair division of
indivisible goods, while Part IT (Chapters 6 and 7) is on fair division of divisible goods.
Chapter 2 (Preliminaries) introduces some notations, definitions, and tools that are used
across multiple chapters.

In Chapter 3 (Extending the Characterization of Maximum Nash Welfare),
we characterize the class of welfarist rules that guarantee EF1 allocations. In a prior work,
Caragiannis et al. (2019) showed that every allocation output by the maximum Nash welfare
(MNW) rule satisfies EF1. Suksompong (2023) later showed that MNW is the unique additive
welfarist rule that satisfies EF1. We show that the MNW rule is in fact the only (not
necessarily additive) welfarist rule that guarantees EF1.

In Chapter 4 (Reachability of Fair Allocations via Sequential Exchanges), we
examine the structure of EF1 allocations by studying their reachability when agents are
allowed to exchange goods sequentially. Given an initial allocation and a target allocation,
both of which are EF1, we are interested in whether the target allocation can be reached from
the initial allocation via a sequence of operations such that every intermediate allocation is
also EF1; each operation consists of two agents exchanging a pair of goods. We show that
this is not always possible even for two agents, and deciding their reachability is PSPACE-
complete in general. On the other hand, we prove that reachability is guaranteed for two
agents with identical or binary utilities as well as for any number of agents with identical
binary utilities. We also examine whether there is an EF1 exchange sequence that is optimal
in the number of exchanges required. We show that this is always possible for two agents
with identical or binary utilities, and that deciding whether such an optimal sequence exists
is NP-hard even for four agents with identical utilities.

In Chapter 5 (Reforming an Unfair Allocation by Exchanging Goods), we con-
tinue the study from Chapter 4 on the structure of EF1 allocations. This time, we are
interested in whether a given initial allocation, which is now not EF1, can be reformed into
an EF1 allocation via a sequence of operations. Similar to the previous chapter, we shall
allow agents to exchange a pair of goods in each operation. We investigate the complexity of
deciding whether this is possible, and show that it is in P for (a) two agents with identical
utilities, (b) a constant number of agents with binary utilities, and (c) any number of agents
with identical binary utilities. In these cases, finding the optimal number of such exchanges
is also in P. We show that, however, the respective problems are NP-hard for other cases.
We also examine the number of exchanges required in the reformation process in the worst
case, and show that almost all goods need to be exchanged in the worst case for general
utilities, while only half of the goods need to be exchanged in the worst case for identical
binary utilities.

In Chapter 6 (On Connected Strongly-Proportional Cake-Cutting), we charac-
terize the existence of a connected strongly-proportional allocation of a cake and study the
complexity to decide its existence. We present a simple characterization for hungry agents

with equal entitlements, and show that deciding the existence of such an allocation requires

Chapter 1: Introduction

O(n?) queries. For non-hungry agents or for generic entitlements, deciding the existence of
such an allocation, however, requires ©(n -2™) queries. We also investigate the existence of a
connected allocation of a cake where each agent must receive more than a small fixed amount
greater than their proportional share, and show that the number of queries is in ©(n - 2™)
even for hungry agents with equal entitlements. We also show that no finite algorithm can
decide the existence of a connected strongly-proportional allocation of a pie.

In Chapter 7 (Approximate Envy-Freeness in Graphical Cake Cutting), we
consider another setting in dividing goods that are divisible—the graphical cake cutting
model—wherein the cake lies on the edges of a connected graph. The goal is to investigate
the existence of connected allocations of a graphical cake with minimal envy. We show
that there always exists a 1/2-additive-EF allocation of a graphical cake, and a (3 + €)-EF
allocation of a graphical cake in the form of a star graph for any € > 0. In the case where
agents have identical utilities, we show that an essentially 2-EF allocation exists. These
existence results are accompanied by efficient algorithms to compute such allocations. We
also study the existence of allocations with minimal envy when agents are allowed to have a
small number of connected pieces, and provide bounds to the maximum number of connected

pieces each agent is allowed to have.

1.5 Bibliographic Notes

The material presented in this thesis is based on joint works with other collaborators during

my PhD studies. In all the works listed below, I am the only student author.
e Chapter 3 is based on a joint work with Warut Suksompong (2023).

Sheung Man Yuen and Warut Suksompong. Extending the characterization of maxi-
mum Nash welfare. Economics Letters, 224:111030, 2023.

e Chapter 4 is based on a joint work with Ayumi Igarashi, Naoyuki Kamiyama, and
Warut Suksompong (2024). A preliminary version of it appeared in Proceedings of the
38th AAAI Conference on Artificial Intelligence (AAAI), 2024.

Ayumi Igarashi, Naoyuki Kamiyama, Warut Suksompong, and Sheung Man Yuen.
Reachability of fair allocations via sequential exchanges. Algorithmica, 86(12):3653—
3683, 2024.

e Chapter 5 is based on a joint work with Ayumi Igarashi, Naoyuki Kamiyama, and
Warut Suksompong (2024).

Sheung Man Yuen, Ayumi Igarashi, Naoyuki Kamiyama, and Warut Suksompong. Re-

forming an unfair allocation by exchanging goods. Under submission, 2024.

e Chapter 6 is based on a joint work with Zsuzsanna Jankoé, Attila Jod, and Erel Segal-
Halevi (2024).

Zsuzsanna Janko, Attila Joo, Erel Segal-Halevi, and Sheung Man Yuen. On connected
strongly-proportional cake-cutting. In Proceedings of the 27th European Conference on
Artificial Intelligence (ECAI), pages 3356-3363, 2024.

Chapter 1: Introduction

e Chapter 7 is based on a joint work with Warut Suksompong (2024). A preliminary
version of it appeared in Proceedings of the 32nd International Joint Conference on

Artificial Intelligence (IJCAI), 2023.

Sheung Man Yuen and Warut Suksompong. Approximate envy-freeness in graphical
cake cutting. Discrete Applied Mathematics, 357:112-131, 2024.

Chapter 2

Preliminaries

This chapter introduces some definitions, notation, and tools that we will use across multiple

chapters. Preliminaries specific to a single chapter are presented in the chapter itself.

2.1 General Setting

In fair division, there is a set G of goods in contention among a finite set N of agents.
The structure of G depends on whether the goods are indivisible or divisible, which will
be elaborated in Sections 2.2 and 2.3 respectively. A bundle or share is a subset of G. The
number of agents is denoted by n. We usually use 1, ..., n to denote the agents and A1, ..., A,
to denote the bundles allocated to the respective agents. An allocation A = (Ay,...,A,) is
an ordered list of n bundles such that A; and A; are disjoint for all distinct ¢, j € N and
Uien 4i = G. The meaning of “disjoint” differs slightly from the usual definition in the case
of divisible goods—this will be elaborated in Section 2.3 later. When we have | J,cy 4; € G
instead, then A is called a partial allocation.

Each agent i has a utility function u; : 2¢ — R>o that assigns a utility to each bundle.
Each agent assigns a utility of 0 to the empty bundle, i.e., u;(&) = 0. The utility functions
satisfy the additivity property, i.e., u;(G' UG") = u;(G") + u;(G") for all disjoint bundles
G',G" C G. When the agents’ utility functions are identical, i.e., u; = u; for all i, j € N, we
simply use u to denote the common utility function.

A (fair division) instance consists of the set of agents N, the set of goods G, and the
agents’ utility functions (u;)ien.

We now give the definitions of the fairness notions on which this thesis is based.

Definition 2.1 (Proportionality). An allocation A is proportional if u;(A;) > w;(G)/n for
all i € N.

Definition 2.2 (Envy-freeness). An allocation A is envy-free if u;(A;) > wu;(A4;) for all
i,j€N.

Common to both fairness notions, every agent receives a bundle that they are satisfied
with in a fair allocation. The satisfaction of an agent ¢ is based on their utility function wu;,

and they are satisfied if their utility of their bundle, u;(4;), is at least a certain threshold. In

Chapter 2: Preliminaries

the case of a proportional allocation, the threshold is based on their utility of the entire set
G—agent 4’s utility of their bundle must be at least their utility of G divided by the number of
agents. In contrast, in the case of an envy-free allocation, the threshold is based on their utility
of other agents’ bundles—agent i’s utility of their bundle must be the highest one among the
bundles allocated to all agents. The comparison for envy-freeness is between agent i’s utility
of their own bundle and agent i’s utility of other agents’ bundles, not between agent i’s utility
of their own bundle and other agents’ utilities of their own respective bundles. In other words,
in an envy-free allocation, each agent does not care about other agents’ preferences as long
as the former agent receives a bundle they perceive to be at least as valuable as a bundle
received by another agent.

Variants of the fairness notions depend on the type of goods in contention. We shall now

discuss each type separately.

2.2 Indivisible Goods

When the goods are indivisible, each of these goods must be allocated wholly to an agent
and cannot be shared among multiple agents or divided into parts to be allocated to more
than one agent. In this case, G is a finite set of discrete goods. The number of goods in
G is denoted by m, and the goods are usually denoted by ¢1,...,9m. An (allocation) size
vector §= (s1,...,8y) is a list of non-negative integers such that s; = |4;|. This implies that
Y ien Si = m, the number of goods in G.

For ease of notation, we write u;(g) instead of u;({g}) for agent i’s utility of a single
good g. A utility function w; is binary if u;(g) € {0,1} for all g € G. Binary utility functions
are relevant in settings where each agent only has two levels of preference for each good:
either the good is valuable to them or not.

We now discuss fairness in dividing indivisible goods. Since an allocation satisfying envy-
freeness may not always exist, we relax this fairness notion and consider envy-freeness up to

one good instead.

Definition 2.3 (EF1). An allocation A is envy-free up to one good (EF1) if u;(A;) > u;i(A;)
or there exists g € A; such that u;(A4;) > u;i(A; \ {g}) for all 4,5 € N.

We say that agent i is EF1 towards agent j if u;(A;) > u;(A;) or there exists g € A;
such that u;(A4;) > wi(A; \ {g}). When agent i is EF1 towards agent j, agent i either does
not envy agent j, or agent ¢ envies agent j such that the envy can be eliminated by having
agent ¢ choose a good (i.e., a most valuable good from agent i’s perspective) to remove from
agent j’s bundle. In the latter case, the good is not actually removed from agent j’s bundle
in the allocation, but merely excluded for the purpose of comparing agent 4’s utility of their
own bundle with that of agent j’s bundle. In an EF1 allocation, every agent is EF1 towards
every other agent.

An EF1 allocation can always be found efficiently (Lipton et al., 2004), which demon-
strates the feasibility of EF1. Therefore, EF1 is the main fairness notion considered in Part I

of this thesis. In particular, Chapters 3 to 5 are all related to EF1 allocations.

10

Chapter 2: Preliminaries

In Chapters 4 and 5, we consider the setting where agents can exchange goods with
each other. Define the exchange graph G = G(N,G) as a simple undirected graph with the
following properties: the set of vertices consists of all allocations A in the instance, and the
set of edges consists of all pairs {A, B} of allocations such that B = (By,...,B),) can be
obtained from A = (Ay,..., A,) by having two agents exchange one pair of goods with each
other—that is, there exist distinct agents i,7/ € N and goods g € A; and ¢’ € Ay such that
B; = (A U{d'}) \ {9}, By = (Ar U{g}) \ {¢'}, and Bj = A; for all j € N\ {i,7'}. A path
from one allocation to another on the graph is called an exchange path. The distance between
two allocations is the length of a shortest exchange path between them—if such a path does
not exist, then the distance is defined to be oc.

The following result shows that the exchange graph G consists of many connected com-

ponents, each represented by a unique size vector §= (s1,...,s,) such that >,y s; = m.

Proposition 2.2.1. Let A and B be allocations in an instance. Then, there exists an ex-

change path from A to B if and only if A and B have the same size vector.

Proof. Note that every exchange preserves the size vector of the allocation, since each agent
involved in the exchange gives away one good and receives one good in return, while other
agents retain their bundles.

(=) If there exists an exchange path from A to B, then there exists a non-negative integer
T and a list of allocations (A°, Al ... AT) such that A° = A, AT = B, and for each t €
{0,...,T—1}, At and A**! are adjacent on the exchange graph. For each t € {0,...,T —1},
A and A" have the same size vector. Therefore, the whole list of allocations, including A
and B, have the same size vector.

(<) Assume that A and B have the same size vector; we shall show the existence of an
exchange path from A to B. We first remedy the goods in agent 1’s bundle. If A1 = By, then
all the goods in agent 1’s bundle are correct and we are done. Otherwise, since |A;| = | By,
we must have |A; \ Bi| = |B; \ A1| > 0. Perform an exchange between a good g € A; \ By
and a good ¢’ € By \ A;. This creates a new allocation where the number of wrong goods
in agent 1’s bundle decreases by one. By repeating this procedure, we eventually arrive at
an allocation with agent 1’s bundle remedied. This allocation can be reached from A via an
exchange path. We then remedy the goods in the bundles of agents 2,3,...,n in the same
manner until every agent has their own bundle in B. Note that when the goods in agent i’s
bundle are remedied, there is no exchange of goods involving agents 1 to ¢ — 1 anymore, and
so the bundles of agents 1 to ¢ — 1 remain correct. By concatenating all these exchange paths,

we get an exchange path from A to B. O

2.3 Divisible Goods

We now consider the setting in which a good may be broken up into smaller parts to be
allocated to different agents. The simplest representation of G is by the unit interval C' =
[0, 1], also known as a cake. Each utility function w; is divisible on the cake, i.e., for every

interval [x1,29] C C and X € [0, 1], there exists a point y; € [x1, 23] such that u;([z1,y;]) =

11

Chapter 2: Preliminaries

A+ u;([z1,z2]). This implies that the set containing a single point {z} is worth zero utility to
every agent.

Each agent’s bundle is restricted to a finite union of intervals. Since a single point is
worth zero utility to every agent, we may assume without loss of generality that intervals are
closed, and that two agents’ bundles are considered disjoint if they intersect at a finite set of
points (notably, the endpoints of the intervals).

In Chapter 6, we consider the simple case wherein G consists of a single piece of cake,
and each agent receives a single (closed) interval in an allocation. The setting in Chapter 7,
however, is more complex. We assume that G is in the form of a graph, and that each edge of
the graph is isomorphic to a single piece of cake. Each agent receives a finite union of (closed)
intervals—where the intervals may belong to different edges—such that it is connected, i.e.,
for any two points in the agent’s bundle, there exists a path between the two points that
only traverses the bundle. Vertices, as well as the endpoints of the respective intervals, may
be shared between multiple agents. In this chapter, G is known as a graphical cake. For
simplicity, in both Chapters 6 and 7, we normalize the utility functions to 1, i.e., u;(G) =1
for all i € N.

We now introduce variants of the common fairness notions that were discussed earlier.

We start with two variants of proportionality.

Definition 2.4 (Strong-proportionality). An allocation A is strongly-proportional if u;(A;)
> u;(G)/n for all i € N.

Definition 2.5 (a-proportionality). For o > 1, an allocation A is a-proportional if u;(A;) >
u;(G)/(an) for all i € N.

Strong-proportionality is a stronger variant of proportionality in that it requires every
agent ¢ to receive more than their proportional share from G, rather than at least their
proportional share. On the other hand, for a > 1, a-proportionality is a weaker variant of
proportionality in that every agent only needs to receive at least 1/« of their proportional
share. Note that 1-proportionality and proportionality are equivalent.

Next, we consider two variants of envy-freeness.
Definition 2.6 (a-EF). For a > 1, an allocation A is a-EF if u;(A4;) > u;i(A;)/« for all
i,j€N.
Definition 2.7 (a-additive-EF). For o > 0, an allocation A is a-additive-EF if u;(A;) >
u;i(A;) —aforall i,j € N.

An «o-EF allocation allows agents to envy each other, as long as the envy does not exceed a
factor of a. Analogously, an a-additive-EF allocation requires that the envy does not exceed
an amount of a. Note that 1-EF and 0-additive-EF are both equivalent to envy-freeness.

Strong-proportionality is the main fairness notion considered in Chapter 6. In the same
chapter, we also consider a more general case where each agent’s proportional share need
not be u;(G)/n. On the other hand, a-EF and a-additive-EF are the main fairness notions
considered in Chapter 7. The notion of a-proportionality is also used in Chapter 7 to illustrate
certain concepts.

We state the relationships between the different fairness notions.

12

Chapter 2: Preliminaries

Proposition 2.3.1. Let A be an allocation in an instance for n > 2 agents, and let o > 1.

e If A is a-EF, then it is (a — O‘gl)-pmportz'onal.

o If Ais a-EF, then it is (gﬁ)-additive-EF.

o If A is a-proportional, then it is (1 — O?—n)—additive-EF.
Proof. Let i € N. We prove the three statements in turn.

e Suppose that A is o-EF, and let £ = u;(A;). The utility of the bundle of every other

agent j € N is at most o€ to agent i, so

1:Zui(Aj)§§+(n—1)a§:§(an—a+1).

JEN
This gives
> 1 B 1
“an—a+1 (a—%)n’
which establishes (a — C“T_l)—proportionality.

e Suppose that A is a-EF, and let j € N. If u;(4;) > ;9, then u;(4;) < 1- 55 =
é <%H> < w, and the allocation is not a-EF, a contradiction. Hence, u;(A;) <
257+ By definition of a-EF we have u;(A4;) > u;(A;)/a, and so

u;(Aj) 1 1 a a—1

this shows (gﬁ) -additive-EF'.

e Suppose that A is a-proportional, and let j € N. Then u;(4;) > al—n and u;(A;) <
1—’U,Z(A@) S 1—L SO

an’ 2
ui(Aj) —ui(A4;) <1— -

proving (1 — %)—additive—EF. O

In order for algorithms to access the utilities of the agents’ bundles, we assume that eval
and mark queries are available as in the standard model of Robertson and Webb (1998).
More specifically, for any x,y € C with x < y, EVAL;(z,y) returns the value of u;([x,y]),
and for any z € C and r € [0,u;([z,1])], MARK;(x,r) returns the smallest value z € [z, 1]
such that u;([z, z]) = r. For convenience, in Chapter 6, we let MARK;(x, r) return the largest

value z instead, and show that the results in the chapter still hold.

13

Part I

Indivisible Goods

14

Chapter 3

Extending the Characterization of

Maximum Nash Welfare

3.1 Introduction

The fair allocation of indivisible goods—be it artwork, furniture, school supplies, or electronic
devices—is a ubiquitous problem in society and has attracted significant interest in economics
(Moulin, 2019). Among the plethora of methods that one may use to allocate indivisible
goods fairly, the method that has arguably received the most attention in recent years is
the mazimum Nash welfare (MNW) rule. For instance, MNW is used to allocate goods on
the popular fair division website Spliddit (Goldman and Procaccia, 2014), which has served
hundreds of thousands of users since its launch in 2014.

MNW selects from each profile an allocation that maximizes the product of the agents’
utilities, or equivalently, the sum of their logarithms. In an influential work, Caragiannis et al.
(2019) showed that every allocation output by MNW satisfies envy-freeness up to one good
(EF1): given any two agents, if the first agent envies the second agent, then this envy can
be eliminated by removing some good in the second agent’s bundle. Recently, Suksompong
(2023) provided the first characterization of MNW by showing that it is the unique additive
welfarist rule that guarantees EF 1—an additive welfarist rule selects an allocation maximizing
a welfare notion that can be expressed as the sum of some function of the agents’ utilities.
Suksompong’s characterization raises an obvious question: Is MNW also the unique (not
necessarily additive) welfarist rule that guarantees EF1, where a welfarist rule selects an
allocation maximizing a welfare notion that can be expressed as some function of the agents’
utilities?

In this chapter, we answer the above question in the affirmative, by extending the charac-
terization of Suksompong (2023) to the class of all welfarist rules (whether additive or not).
This further solidifies the “unreasonable fairness” of MNW established by Caragiannis et al.
(2019).

15

Chapter 3: Extending the Characterization of Maximum Nash Welfare

3.2 Preliminaries

Refer to the preliminaries in Sections 2.1 and 2.2. We now describe other preliminaries specific
to this chapter.

A profile consists of the set of agents N, the set of goods G, and the agents’ utility
functions (u;);en.' A rule maps any given profile to an allocation. Given n > 2, a welfare
function is a non-decreasing function f, : [0,00)" — [—00,00). The welfarist rule with
(welfare) function f, chooses from each profile an allocation A = (Ay, ..., A,) that maximizes
the welfare f(u1(A1),...,un(Ay)); if there are multiple such allocations, the rule may choose

one arbitrarily.

3.3 Result for Continuous Welfare Functions

In this section, we consider only welfare functions that are continuous—in the prior char-
acterization of additive welfarist rules, Suksompong (2023) made the stronger assumption
that the welfare function is differentiable. We focus only on profiles that admit an allocation
where every agent receives positive utility—for profiles that do not admit an allocation where
every agent receives positive utility, MNW requires an additional tie-breaking specification
in order to ensure EF1 (Caragiannis et al., 2019).

We now state our characterization. Recall from Section 3.2 that a welfare function is

assumed to be non-decreasing on [0, c0)".

Theorem 3.3.1. Fix n > 2. Let f, be a welfare function that is continuous and strictly

increasing® on (0,00)". Then, the following three statements are equivalent:

(a) For every profile that admits an allocation where every agent receives positive utility,

every allocation that can be chosen by the welfarist rule with function f, is EF1.

(b) For every profile that admits an allocation where every agent receives positive utility,

there exists an EF1 allocation that can be chosen by the welfarist rule with function fy,.
(c) The following two statements hold for f:

(i) There exists a strictly increasing and continuous function q : (0,00) — (—00, 00)

such that fn(x1,z2,...,2,) = q(x122 - - TY) for all zq,..., 2z, > 0.

(ii) The inequality fn(x1,z2,...,2n) > fu(y1,Y2,-..,Yn) holds for all x1,...,2, >0
and yi,...,yn > 0 satisfying [}, yi = 0.

Note that if f,, satisfies (c), then given any profile that admits an allocation where every
agent receives positive utility, an allocation can be chosen by the welfarist rule with function
fn if and only if it can be chosen by MNW, so the two rules are effectively equivalent. Hence,
Theorem 3.3.1 provides a characterization of MNW among all welfarist rules.

Before proceeding to the proof of our characterization, we first establish a technical lemma.

!This was defined as an instance in Chapter 2, but we use profile in this chapter.
2The theorem does not hold without the assumption that f,, is strictly increasing on (0,00)™: for example,
if fn is a constant function, then statement (b) holds but (a) does not.

16

Chapter 3: Extending the Characterization of Maximum Nash Welfare

Lemma 3.3.2. Fizn > 2. Let f, : [0,00)" — [—00,00) be a function that is continuous on
(0,00)™. Suppose that

fn((k + 1)$171‘27 LI 7x’i—17kxi7xi+17 L) 7xn)
= fn(kxl,l’g, e, X1, (k + 1):L’Z',Hfi+1, ce ,xn) (31)

for all x1,...,2, > 0, positive integers k, and i € N \ {1}. Then, there exists a contin-
wous function q : (0,00) — [—00,00) such that fn(z1,%2,...,2n) = q(z122---T4) for all
Ti,...,Ty > 0.

Proof. Suppose that f,, fulfills assumption (3.1). First, we show that f,, satisfies

fn(w7x27 o 7$i—1vz/xaxi+1w . 'an) = fn(ywrzw . '7$i—17z/y7‘ri+17 o 7:1:77,) (32)

foralli e N\{1} and xo,...,2i—1,%it1,...,Zn, z,y,z > 0. Assume without loss of generality
that ¢« = 2; the proof for any other i € {3,...,n} is analogous. Let z3,...,zy,,2z > 0 be fixed
throughout. Define p : (0,00) — [—00,00) by p(x) = fu(z,z/x,23,...,2,) for all z > 0.
Note that p is continuous due to the continuity of f,, on (0,00)". For any positive integer k

and any z > 0, we have

k+1 x z
— x| =f((k+1) — k ———, x3,...,Tp
p(55) = (e o g e n)
=k h+1) ——— s, a (by (3.1))
- n k) (k—i—l)x’ 37" 9 n y N
= folz, z/x,23,...,20)
= p(z),
so for any rational number r = a/b > 1, we have
(rz) = a a-—1 b+1 _ (a-—1 b+1 = p(a)
Pra)=p a—1 a—-2 b v)=P a—2 b v - B
Similarly, we have p(rz) = p(z) for any rational number 0 < r < 1, hence the same

equation is true for all positive rational numbers r. Since p is continuous and the posi-
tive rational numbers are dense in (0,00), we can conclude that p is constant, and thus,
folz,z/x 23, .. xn) = fu(y,2/y,x3,...,2,) for all x,y > 0. Hence, (3.2) is true for all
ie N\ {1} and zo,..., 21, Tit1,. .., Tn, T, Yy, 2z > 0.

Next, we prove by backward induction that for all integers ¢t € {1,...,n}, there exists a

continuous function ¢ : (0, 00)% — [—00,00) such that

fn(xh cee 75Un) = Qt(1t+1 Ty L2y ek ey .’L't)
for all 1,...,z, > 0. Then, q := ¢ gives the desired conclusion.
For the base case t = n, we have g, := fu|(0,00)»- For the inductive step, let ¢ € {2,...,n}

be given, and assume that such a function ¢; exists; we shall prove that g, exists as well.

Define ¢;—1 by ¢t—1(y1,- -+, y1—1) :== @(y1,. .., yr—1,1) for all y1,..., 91 > 0. Note that ¢,

17

Chapter 3: Extending the Characterization of Maximum Nash Welfare

is continuous on (0, 00)!~! due to the continuity of ¢; on (0,00)t. Let x1,...,2, > 0 be given.

Then, by setting z := x1 and y := z := x1x¢, We have

fo(x1, o oxn) = fulz, 2o, .o 21, 2/T, Tpg 1, - oo, Tp)
= fa(y, o, ..., X—1,2/Y, Tts1, .., Tp) (by (3.2))
= fo(z12, 20, . i1, L@, oy)
= q(T124 X441+ Ty T2y oo, Tp—1, 1) (by the inductive hypothesis)
= q-1(T12¢ - Ty T2,y o, Ty1),
establishing the inductive step and therefore the lemma. O

We are now ready to prove our main result.

Proof of Theorem 3.3.1. The implication (a) = (b) is trivial. For the implication (c¢) = (a),
if f, satisfies (c), then given a profile that admits an allocation where every agent receives
positive utility, every allocation that can be chosen by the welfarist rule with function f, is
also an allocation that can be chosen by MN'W, which is known to be EF1 (Caragiannis et al.,
2019); hence, f,, also satisfies (a). It therefore remains to prove the implication (b) = (c).
Assume that f,, satisfies (b); we will show that both statements (i) and (ii) of (c) hold.

To prove (i), it suffices to show that f,, satisfies (3.1) for all 21, ..., 2, > 0, positive integers
k, and i € N \ {1}. Indeed, once this is shown, Lemma 3.3.2 provides a continuous function
q : (0,00) = [—o00,00) satisfying fp(z1,22,...,2n) = q(z122- - 2) for all zy,... 2, > 0.
Note that ¢ must be strictly increasing because f,, is strictly increasing on (0, 00)", and —oo
cannot be in the range of ¢ since ¢ is strictly increasing and its domain is an open set in R.

To show (3.1), suppose on the contrary that (3.1) is false for some z1, ..., x, > 0, positive

integer k, and i € N \ {1}; assume without loss of generality that ¢ = 2, which means that
fo((BE+ Dz, kxo, 3, ..y xn) # fo(kzy, (B + Do, 3, ..., 20).

Suppose that
fo((BE+ Dz, kxo, w3, .. xn) < fo(kzy, (B + D)z, 23, ..., 20);

the case where the inequality goes in the opposite direction can be handled similarly. By the

continuity of f,, there exists € € (0,z1) such that
fo((E+Dzy — €, kxa,x3.. . xn) < folkzy — €, (k+ Dz, z3,. .., 20). (3.3)
Consider a profile with m = kn 4+ 1 goods, where G’ := {g1,...,9kn} = G \ {gm}, such that
e for each g € G’, we have u;(g) = z; for j € {1,2} and u;(g) = z;/k for j € N\ {1,2};
e ui(gm) =11 —¢€, and u;j(gm) =0 for j € N\ {1}.

Clearly, this profile admits an allocation where every agent receives positive utility. Let A be

an EF1 allocation chosen by the welfarist rule with function f, on this profile. Regardless

18

Chapter 3: Extending the Characterization of Maximum Nash Welfare

of whom g,, is allocated to, each agent receives at most k goods from G’ in A—otherwise,
if some agent j receives more than k goods from G’, then some other agent receives fewer
than k& goods from G’ by the pigeonhole principle and therefore envies j by more than one
good, meaning that A is not EF1. Since |G| = kn, every agent receives exactly k goods
from G’. Furthermore, g,,, must be allocated to agent 1; otherwise, the allocation where g, is
allocated to agent 1 (and all other goods are allocated as in A) has a higher welfare than A,
contradicting the fact that A is chosen by the welfarist rule with function f,,. The welfare of
A must not be smaller than that of another allocation where agent 1 receives g,, along with
k — 1 goods from G’, agent 2 receives k + 1 goods from G’, and every other agent receives k

goods from G’ each. This means that
fa((E+ Dxy — €, kxo,x3.. . x0) > frlkxy — €, (k+ Dz, z3,. .., 24),

contradicting (3.3). This establishes (i).

It remains to prove (ii). Consider any zj,...,x, > 0 and yi,...,y, > 0 satisfying
[T, vi =0. Let X := [, ; > 0. Without loss of generality, assume that y; = --- =y =0
and Y :=[[", ., > 0 for some k € {1,...,n} (if K = n, the empty product [[;_, ; v; is
taken to be 1). Define 21, ..., z, by 2 := (X/2Y)V* for all i € {1,...,k} and z; := y; for all
ie{k+1,...,n}. Then,

fu(yi - yn) < fau(z1,- 005 20) (since f, is non-decreasing)
=q(z1- 2k - Zkt1 " 2Zn) (by (i) and since all z;’s are positive)
= q((X/2Y) - yht1---yn)

(X/2)
(

(

=dq
< q(X) (since ¢ is strictly increasing)
=q\r1-)
= fo(z1,. .., 2n), (by (i) and since all x;’s are positive)
completing the proof of the theorem. O

3.4 Result for Non-Continuous Welfare Functions

We now consider welfare functions that are not necessarily continuous. It turns out that
the characterization of the MNW in this case can be expressed more simply than in the

continuous case.

Theorem 3.4.1. Fix n > 2. Let f, be a welfare function that is strictly increasing on

(0,00)™. Then, the following three statements are equivalent:

(a) For every profile that admits an allocation where every agent receives positive utility,

every allocation that can be chosen by the welfarist rule with function f, is EF1.

(b) For every profile that admits an allocation where every agent receives positive utility,

there exists an EF1 allocation that can be chosen by the welfarist rule with function f,.

19

Chapter 3: Extending the Characterization of Maximum Nash Welfare

(¢) The welfare function f, satisfies frn(z1,...,2n) > fn(y1,...,yn) whenever [T;_, x; >

H?:1 Yi-

For a function f, satisfying (c), the condition does not say whether f,(z1,...,x,) is equal
to fn(y1,...,yn) when [T | @ = [[i; yi, unlike in the continuous case or in MNW. However,
despite this ambiguity, the theorem still says that all allocations tied for the greatest product
of the agents’ utilities of their bundles are also EF1. Indeed, suppose that A = (A1, ..., A)
has the greatest product [, u;(4;) > 0 among all allocations in the profile but is not
chosen by some f, that satisfies (c¢). Suppose that f,, chooses B = (Bjy,...,B,) instead.
We have [0 wi(B;) = [[i; wi(A4;) but fro(ui(B1), ..., un(Bn)) > falui(A1),. .., un(A4y)).

Then, consider another function f}, such that
o fr(ui(Ar), ... un(An)) = fa(wr(B1), ..., un(Bn)),
o fl(u1(B1),...,un(Bn)) = fu(ui(A1),...,upn(Az)), and
o fl(x1,...,2n) = fu(x1,...,2,) for all other values of (x1,...,x,).

It can be easily verified that f/ satisfies (¢) and chooses A, which, by Theorem 3.4.1, is
indeed EF1. Therefore, Theorem 3.4.1 says that any allocation with the greatest product of
the agents’ utilities of their bundles must be EF1, as long as the product is positive. This is
exactly what Caragiannis et al. (2019) says about MNW.

We show that condition (c) is still sufficient to satisfy (a) and (b) despite the condition
being more general than in the continuous case. Because of the ambiguity, the set of alloca-
tions chosen by a specific welfare function f,, that satisfies (¢) is a subset of allocations chosen
by MNW. This, together with the fact that MNW guarantees EF1, proves the implication (c)
= (a), just like in the continuous case. It is also clear that (a) implies (b). Thus, it suffices

to prove (b) = (c). We shall establish this fact via a series of lemmas.

Lemma 3.4.2. Let f, be a welfare function that satisfies statement (b) of Theorem 8.4.1.
Then, for any positive integer k, distinct i,j € {1,...,n}, and positive numbers x1, ..., Ty,

we have

1 1
o (@1, . 20) > fo (961, N (1 + k> Ty Tig1ye vy Tj1, (1 - k:) Ty Tjty.-- 7mn> .

Proof. Consider a profile with m = kn goods such that for all ¢« € N and g € G, we have
ui(g) = x;/k. The only EF1 allocation A is when every agent has k goods, and the welfare
of this allocation is f,(x1,...,2z,). The welfare of another allocation B in which agent ¢
receives k + 1 goods, agent j receives k — 1 goods, and every other agent receives k goods,
is fo(z1,...,(1+1/k)x;, ..., (1 —1/k)zj,...,xy,). Since A is the only EF1 allocation, the
welfare of A must be at least the welfare of 5. This proves the result. O

Lemma 3.4.3. Let f, be a welfare function that satisfies statement (b) of Theorem 3.4.1.

Then, for any i € {2,...,n} and positive numbers x1, ..., x,, we have

fn(xla"' ,-:Un) > fn(zax%" ° 7xi—17]‘7x7:+17' "7ajTL)

20

Chapter 3: Extending the Characterization of Maximum Nash Welfare

whenever 0 < z < x12;.

Proof. Assume without loss of generality that ¢ = n = 2; the proof for any other n > 3 and
i € {3,...,n} is analogous. The result is clear for zo = 1, since f, is strictly increasing on
(0,00)2. We first consider the case where 2o > 1.

Let 7 = (z/(x122))"/? < 1. Let ko be a positive integer such that kg > 1/(1 — 7)—this
implies that r < 1 — 1/kg. Define y = (1 4 1/kg)x2; note that y > x5. Then, we have

fa(z1,22) > fo <(1 — /j) x1, (1 + /j) CC2> > fa(rz,y),
0 0

where the first inequality follows from Lemma 3.4.2 and the second inequality follows from
the fact that fo is strictly increasing on (0, c0)?.
Now, consider the function hy (k) = (14 1/k)F1o822] wwhere log is the natural logarithm.

We have hi(k) < (1 + 1/k)¥1°822 — exp(log o) = 2 as k — oo, and
hi(k) > (14 1/k)Fleew2=t — (1 4 1/k)klo822(1 4 1/k) 7! — exp(logxs) - 1 = 29

as k — oo. By the squeeze theorem, we have limy_,, hi(k) = x2. Let k1 be a positive integer
such that for all £ > ki, we have hy(k) > raxg; this is possible since rzy < zs.

Consider also the function ho(k) = (1 — 1/k)l*1°822] " By a similar reasoning, we have
limg o0 ho(k) = 1/25. Let ko be a positive integer such that for all k > ko, we have ho(k) >
1/y; this is possible since 1/y < 1/x.

Let k3 = max{ki, k2}. Then, by applying the inequality from Lemma 3.4.2 repeatedly,

we have

1 | k3 log z2 | 1 | k3 log z2]
> fo 1+ — rry, |1 —— Y
k3 k?)

= fa(ha(ks)rza, ha(ks)y)
> f2(7’2l‘1x2, 1)

= f2(z7 1)7

where the last inequality holds because hi(ks) > rxo, ho(ks) > 1/y, and that fo is strictly
increasing on (0, 00)?. Combining all the inequalities, we have fa(z1,72) > f2(z, 1), proving
the result for zo > 1.

The case for 9 < 1 is proved similarly. O

Lemma 3.4.4. Let f, be a welfare function that satisfies statement (b) of Theorem 3.4.1.

21

Chapter 3: Extending the Characterization of Maximum Nash Welfare

Then, for any positive numbers x1,...,T,, we have

faly, L. 1) > fo(xr, ..oy xn) > fu(z2,1,...,1)

whenever 0 < z < [[7, xi <.

Proof. We shall prove only the right inequality. The left inequality can be proven by a
symmetrical argument by reversing the inequalities in Lemma 3.4.3.
Let r = (2/]], 2;)"/(=1 < 1. Then, by applying the inequality from Lemma 3.4.3

repeatedly, we have

fa(@1,. . @n) > fa(raizs, 1, 2s, ... 20)
> fu(r?zizoxs, 1,1, 24, ..., xp)
S
> fu(r" ez, 1,000, 1)
= fu(z,1,...,1). 0

The result from Lemma 3.4.4 allows us to prove our main result.

Proof of Theorem 3.4.1 (b) = (c). Let f, satisfy statement (b). Let x1,...,Zn,y1,...,Yn
be non-negative numbers satisfying [, 2; > [[i_; yi- First, we consider the case where
[T, vi > 0. Let w be the mean of [["_; x; and [[;_, yi—note that [\, z; > w > [[;; vi.
By Lemma 3.4.4, we have f,(z1,...,2y) > fo(w,1,...,1) > fn(y1,...,Yn), which shows that
fn satisfies (c).

Next, we consider the case where []";y; = 0. Let X =[], x; > 0. Without loss of
generality, assume that yy = --- = yp =0and Y := [\, ., y; > 0 for some k € {1,...,n} (if
k = n, the empty product [];_, i is taken to be 1). Define z1,..., 2, by z; := (X/2Y)1/k
forallie {1,...,k} and z; :=y; for alli € {k +1,...,n}. Then, we have

fn(ylv---;yn) < fn(zly .. ~7Zn) < fn(xly e 7$n>>

where the first inequality follows because f, is non-decreasing, and the second inequality
follows from the first half of this proof since 0 < [[i; z; = X/2 < X < [[i-; #;. This shows
that f,, satisfies (c). O

3.5 Conclusion

In this chapter, we have shown that the MNW is the unique welfarist rule that guarantees

EF1, thereby justifying its “unreasonable fairness”.

22

Chapter 4

Reachability of Fair Allocations via

Sequential Exchanges

4.1 Introduction

In fair division, the goal is typically to find an allocation of the resource that is “fair” with
respect to the agents’ preferences. When allocating indivisible goods—such as books, clothes,
and office supplies—a prominent fairness notion in the literature is envy-freeness up to one
good (EF1). In an EF1 allocation of the goods, an agent is allowed to envy another agent
only if there exists a good in the latter agent’s bundle whose removal would eliminate this
envy. The “up to one good” relaxation is necessitated by the fact that full envy-freeness is
sometimes infeasible, as can be seen when two agents compete for a single valuable good. It
is well-known that an EF1 allocation always exists regardless of the agents’ valuations for the
goods and can moreover be computed in polynomial time (Lipton et al., 2004; Budish, 2011).
The simplicity, guaranteed existence, and efficient computation makes EF1 a particularly
attractive fairness notion.!

In this chapter, we take a different perspective by initiating the study of reachability in
fair division. Given two fair allocations—an initial allocation and a target allocation—we are
interested in whether the target allocation can be reached from the initial allocation via a
sequence of operations such that every intermediate allocation is also fair. As an application
of our problem, consider a company that wants to redistribute some of its employees between
its departments. Since performing the entire redistribution at once may excessively disrupt
the operation of the departments, the company prefers to gradually adjust the distribution
while maintaining fairness among the departments throughout the process. Another example
is a museum that plans to reallocate certain exhibits among its branches—performing one
small change at a time can help ensure a seamless transition for the visitors. In this chapter,
we shall use EF1 as our fairness benchmark and allow any two agents to exchange a pair
of goods in an operation. The reachability between EF1 allocations, or lack thereof, is an

interesting structural property in itself; similar properties have been studied in other collective

!By contrast, it remains unknown whether a stronger fairness notion called envy-freeness up to any good
(EFX) can always be satisfied (Akrami et al., 2023), whereas another well-studied fairness notion, mazimin
share fairness, does not offer guaranteed existence (Kurokawa et al., 2018).

23

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

decision-making scenarios such as voting (Obraztsova et al., 2013, 2020).

Closest to the material in this chapter is perhaps a line of work initiated by Gourves et al.
(2017). These authors considered the “housing market” setting, where the number of agents
is the same as the number of goods and each agent receives exactly one good. In their model,
a pair of agents is allowed to exchange goods if the two agents are neighbors in a given social
network and the exchange benefits both agents. Their paper, along with a series of follow-up
papers (Huang and Xiao, 2020; Li et al., 2021; Miiller and Bentert, 2021; Ito et al., 2023),
explored the complexity of determining whether an allocation can be reached from another
allocation in this model and its variants. More broadly, reachability problems are also known
as reconfiguration problems (Nishimura, 2018); examples of such problems that have been
studied include minimum spanning tree (Ito et al., 2011), graph coloring (Johnson et al.,
2016), and perfect matching (Bonamy et al., 2019).

4.1.1 Our Results

As is often done in fair division, we assume that every agent is equipped with an additive
utility function. We consider an “exchange graph” with allocations as vertices. The first
question we study is whether it is always possible for agents to reach a target EF1 allocation
from an initial EF1 allocation by exchanging goods sequentially with each other while main-
taining the EF1 property in all the intermediate allocations; in other words, we ask whether
the subgraph of the exchange graph consisting of all EF1 allocations is connected. The second
question is whether we could perform this exchange process using as few exchanges as would
be required if the intermediate allocations need not be EF1; that is, whether there exists an
EF1 exchange path which is optimal in terms of the number of exchanges required. Note that
each agent’s bundle size remains unchanged throughout the process since every operation is
an exchange of goods. Our formal model is described in Section 4.2.

In Section 4.3, we investigate the setting where there are only two agents. Perhaps
surprisingly, we establish negative results even for this setting: the EF1 exchange graph may
not be connected, and even for those instances in which it is connected, optimal EF1 exchange
paths may not exist between EF1 allocations. Therefore, we consider restricted classes of
utility functions. We show that an optimal EF1 exchange path always exists between any
two EF1 allocations if the utilities are identical or binary; this implies the connectivity of
the EF1 exchange graph in these cases as well.

In Section 4.4, we explore the general setting of three or more agents. Interestingly, we
show that finding the smallest number of exchanges between two allocations is NP-hard in
this setting even if we disregard the EF1 restriction. In addition, we establish that deciding
whether an EF1 exchange path exists between two allocations is PSPACE-complete, and
deciding whether an optimal such path exists is NP-hard even for four agents with iden-
tical utilities. We also examine restricted utility functions in more detail. We show that
while connectivity of the EF1 exchange graph is guaranteed for identical binary utilities, the
same holds neither for identical utilities nor for binary utilities separately. Furthermore, the
optimality of EF1 exchange paths cannot be guaranteed even for identical binary utilities.

Overall, our findings demonstrate that the case of three or more agents is much less tractable

24

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

than that of two agents in our setting.
With the exception of hardness results (Theorems 4.4.4, 4.4.5 and 4.4.10), our results
are summarized in Table 4.1. For the positive results, we also show that the corresponding

exchange paths can be found in polynomial time.

utilities general identical binary identical binary
"9 connected? || X (Th. 4.3.1) | v (Th. 4.3.3) | v/ (Th. 4.34) | v (Th. 4.3.3)
~“| optimal? || X (Th. 4.3.2) | v/ (Th. 4.3.3) | / (Th. 4.34) | « (Th. 4.3.3)
n>3 connected? || X (Th. 4.4.8) | X (Th. 4.4.9) | X (Th. 4.4.8) | v (Th. 4.4.6)
= optimal? X (Th. 4.4.7) | X (Th. 4.4.7) | X (Th. 4.4.7) X (Th. 4.4.7)

Table 4.1: Overview of our results. The top row indicates the class of utility functions
considered, “connected?” refers to whether the EF1 exchange graph is always connected, and
“optimal?” refers to whether there always exists an optimal EF1 exchange path between any
two EF1 allocations provided that the EF1 exchange graph is connected.

4.2 Preliminaries

Refer to the preliminaries in Sections 2.1 and 2.2. We now describe other preliminaries specific
to this chapter.

An instance consists of a set of agents N, a set of goods G, a size vector §, and agents’
utility functions (u;)ien.? Given an instance, define the EF1 exchange graph GFF! as the
subgraph of the exchange graph G induced by all EF1 allocations with &, i.e., GE¥! contains
all vertices in G that correspond to EF1 allocations with § and all edges in G incident to two
such vertices. As we shall see later, EF1 exchange graphs are not always connected, unlike
the subgraph induced by all (possibly not EF1) allocations with §in the exchange graph (see

GEFL 5 called an EF1 exchange

Proposition 2.2.1). An exchange path using only the edges in
path. An EF1 exchange path is optimal if its length is equal to the distance between the two

corresponding allocations (in G).

4.3 Two Agents

In this section, we examine properties of the EF1 exchange graph when there are only two
agents. We remark that this is an important special case in fair division and has been the
focus of several prior papers in the area.?

We first consider the question of whether the EF1 exchange graph is necessarily connected.
One may intuitively think that with only two agents, an EF1 exchange path is guaranteed
between any two EF1 allocations because the two agents only need to consider the envy
between themselves. An agent may then carefully select a good from her bundle to exchange
with the other agent so as to ensure that the subsequent allocation is also EF1. However,

this in fact cannot always be done, as our first result shows.

2 An instance as defined in Chapter 2 excludes the size vector, but we include the size vector in this chapter.
3Plaut and Roughgarden (2020, Sec. 1.1.1) discussed the significance of the two-agent setting in detail.

25

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

Theorem 4.3.1. There exists an instance with n = 2 agents with the same ordinal preferences

over the goods such that the EF1 exchange graph is disconnected.

Proof. Consider the utility of the goods as follows:

g o 9 95 91 95 95 g1 gs
ui(g) | 3 3 2 2 2 2 0 0
ug) |3 3 1 1 1 1 0 0

Let A and B be allocations such that A1 = By = {¢1, 92,97, 98} and Ay = By = {g3, 94, 95, 96 };
it can be verified that both A and B are EF1. If there exists an EF1 exchange path between A
and B, then there exists an EF1 allocation A" adjacent to A on the exchange path. Without
loss of generality, A" can be reached from A by exchanging g3 with either g1 or g7. If g3 is
exchanged with g;, then agent 1 envies agent 2 by more than one good. If g3 is exchanged
with g7, then agent 2 envies agent 1 by more than one good. Therefore, neither of these
exchanges leads to an EF1 allocation, so A’ cannot be EF1. Hence, no EF1 exchange path
exists between A and B. O

Next, we consider the question of whether an optimal EF1 exchange path always exists
between two EF1 allocations. By Theorem 4.3.1, even an EF1 exchange path may not exist,
so an optimal such path does not necessarily exist either. We therefore focus on instances
in which the EF1 exchange graph is connected. It turns out that even for such instances, an

optimal EF1 exchange path still might not exist.

Theorem 4.3.2. There exists an instance with n = 2 agents satisfying the following proper-
ties: the EF1 exchange graph is connected, but for some pair of EF1 allocations, no optimal

EF1 exchange path exists between them.

Proof. Consider §= (3,3) and the utility of the goods as follows:

9 ‘ g1 92 93 94 G5 Ge
wui(g) | 5 3 1 0 2 2
ug(g) | 0 3 1 5 2 2

Let B be the allocation such that By = {g1, g2, g3} and Bs = {g4, g5, g6 }—it can be verified
that B is EF1. We first prove that the EF1 exchange graph is connected by constructing an
EF1 exchange path between any EF1 allocation A and the EF1 allocation B. If g; is not with
agent 1 or g4 is not with agent 2 in A, perform any exchange involving g1 and/or g4 so that
g1 is now with agent 1 and g4 is now with agent 2. After the exchange, for each i € {1,2},
agent i’s bundle is worth at least 5 to her, while any two goods in agent (3 — ¢)’s bundle are
worth at most 5 to agent i, so the allocation is EF1. Now, we can exchange the goods in
{92, 93,95, 96} In an arbitrary order to reach B after at most two more exchanges.

We next prove that an optimal EF1 exchange path between allocations A" and B’ does
not exist, where A = {92, 93,94}, A5 = {91, 95,96}, Bl = {94, 95,96}, and B} = {g1, 92, 93};
it can be verified that both A’ and B’ are EF1, and the distance between A’ and B’ is 2
(through exchanging g2 <+ g5 and g3 <> gg). Suppose there exists an optimal EF1 exchange
path between A" and B’, and let A” be the EF1 allocation between A" and B’ on the exchange

26

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

path. Since A" and A” are adjacent, one good from {g2, g3} must be exchanged with one
good from {gs, gs} in A’ to reach A”. However, no matter which goods are exchanged with
this restriction, there exists i € {1,2} such that agent i’s bundle is worth 3 to her and agent
(3 —4)’s bundle is worth 5 + 5 to agent i, contradicting the EF1 property of A”. Therefore,
no optimal EF1 exchange path exists between A’ and B'. O

In light of these negative results, we turn our attention to special classes of utility func-
tions: identical utilities and binary utilities. We prove that for these two classes of utility
functions, the EF1 exchange graph is always connected, and moreover, an optimal EF1 ex-

change path exists between every pair of EF1 allocations.

Theorem 4.3.3. Let an instance with n = 2 agents and identical utilities be given. Then,
the EF1 exchange graph is connected. Moreover, there exists an optimal EF1 exchange path

between any two EF1 allocations, and this path can be computed in polynomial time.

Theorem 4.3.4. Let an instance with n = 2 agents and binary utilities be given. Then,
the EF1 exchange graph is connected. Moreover, there exists an optimal EF1 exchange path

between any two EF1 allocations, and this path can be computed in polynomial time.

To establish these results, we shall prove by induction on T that two EF1 allocations
with distance T" have an optimal EF1 exchange path between them. For the base case T' = 0,
an optimal EF1 exchange path trivially exists. For the inductive step, let T > 1 be given,
and assume the inductive hypothesis that any two EF1 allocations with distance T — 1 have
an EF1 exchange path of length 7' — 1. Now, let A = (A;, A2) and B = (Bj, B2) be any
two EF1 allocations with distance T'; this means that |A; \ B1| = |A2 \ B2| = T. Define
X =A4\By ={x1,...,zp} and Y = A\ Ba = {y1,...,yr}. We show that there exist
goods z, € X and yg € Y such that exchanging them in A leads to an EF1 allocation
A’ = (A}, A}). If this is possible, then |4} \ B1| = |A} \ Ba| = T — 1, which implies that
the distance between A’ and B is T — 1. By the inductive hypothesis, there exists an EF1
exchange path between A’ and B of length T'— 1. This means that there exists an EF1
exchange path between A and B via A’ of length T, which is optimal, hence completing the
proof.

For the time complexity, for each pair of goods from X x Y, one can check in polynomial
time whether exchanging them leads to an EF1 allocation. Since there are at most 2 pairs of

goods to check at each step, and there are t steps in the path, the running time claim follows.

Proof of Theorem 4.3.3. We follow the notation and inductive outline described before this
proof. Assume that the goods in X and Y are arranged in non-increasing order of utilities,
ie., u(r;) > u(xj) and u(y;) > u(y;) whenever i < j. Denote A; = u(yy) — u(x;) for all
te{l,...,T}. Define A} = (A1 U{y1})\{z1} and A, = (A2U{z1})\ {y1} to be the bundles
after exchanging z1 and y;. If (4], A}) is EF1, we are done by induction. Otherwise, we
assume without loss of generality that in the allocation (A}, A%), agent 2 envies agent 1 by
more than one good. Let x be a highest-utility good in A;—we may assume that x # z; for
all t > 2. Since (A1, A2) is an EF1 allocation, we have u(z) > v := u(A4;) — u(As).

27

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

If both £ = 1 and A; < 0 are true, then

u(Aj) = u(Az) = Ay > u(Az) > u(Ar \ {z}) = u(Ar \ {21}) = u(A1 \ {n1}),

which shows that agent 2 does not envy agent 1 by more than one good in (A4}, A})—a
contradiction. Therefore, we must have x # x1 or Ay > 0. If x # x1, then both z and y;
belong to A}. If x = 1 and A; > 0, then y; belongs to A} and u(y;) > u(z). Hence, in

either case, we have
max{u(z), u(y1)} < u(A1) — u(Ay) = u(Ar) — u(Az) + 24,
which implies
v+ 2A1 > max{u(z),u(yr)}- (4.1)
We claim that there exists t € {2,...,T"} such that
2A; < u(z) — 7. (4.2)

Suppose on the contrary that 2A; > u(x) — v for all ¢t € {2,...,T}. Since every good in A;
has value at most u(z) and every good in Bj \ A; has value at most u(y1), it holds that every

good in Bj has value at most max{u(x),u(y1)}. As (B1, B2) is an EF1 allocation, we have
max{u(z), u(y1)} > u(B1) — u(Ba)

T
= (u(Ar) — u(42)) + 3 24,
t=1
T

=v+2A; + ZQAt
t=2
T

>y 4201+) (u(x) —7)
t=2
Z Y + 2A11

where the last inequality holds because u(x) > v and 7" > 1. This contradicts (4.1). There-
fore, let t € {2,...,T} be an index that satisfies (4.2). We now claim that we must have

2A; > max{u(z),u(y1)} — 2u(y1) — 7. (4.3)

Suppose on the contrary that 2A; < max{u(x),u(y1)} — 2u(y1) — . Then we have

max{u(z),u(y1)} — 2ulyr) — v > 24, (by assumption)
> —2u(w) (since u(y:) > 0)
> —2u(xy), (since u(xy) < u(xy))

28

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

which implies
v+ 241 < max{u(iv), U(yl)}>

contradicting (4.1). This establishes (4.3).
Combining inequalities (4.2) and (4.3), we have

—u(y1) < max{u(z) —u(y1),0} — u(y1)
= max{u(z), u(y1)} — 2u(y1)
<4240 (by (4.3))
< u(x), (by (4.2))

which implies v+ 2A; € [—u(y1), u(x)]. We claim that exchanging x; and y; results in an EF1
allocation, i.e., the allocation comprising A = (A1 U{y:}) \ {z:} and A = (As U{z}) \ {w}
is EF1. This is because

u(A7) — u(Ag) = u(Ar) — u(Ag) + 28, = 7 + 24, € [~u(y1), u(@)],

where z € A and y; € AJ—note that x (# z;) and y; were not exchanged going from A to
A”. This completes the induction and therefore the proof. O

Proof of Theorem 4.3.4. We follow the notation and inductive outline described before the
proof of Theorem 4.3.3. Recall that X = A1\ By = {z1,...,27} and Y = Ay \ By =
{y1,...,yr}. Let G; = {g € G | ui(g) = 1} for i € {1,2}. Note that if |A;NG;| > |A3_;NGi],
then agent i does not envy agent (3 —¢) by more than one good after the exchange of any
pair of goods. Therefore, if |4;NG;| > |A3_;NG;] is true for both ¢ € {1, 2}, then exchanging
any pair of goods from X and Y works.

Otherwise, suppose that |4; N G;| < |A3_; N G;| is true for some i € {1,2}, and without
loss of generality, assume that i = 1. We claim that | X NG| < |Y NG1|. Suppose by way of
contradiction that | X N Gi| > |Y N G1|. Then,

[B1 NG| = [((A\ X)UY) NG
=41 NG - X NG|+ Y NGy
<|AaN Gy -1
=|[((B:\X)UY)NGy| -1
=|B2NG| — | X NG|+ |Y NG| —1<|BoNGy| -2,

which means that agent 1 envies agent 2 by more than one good in B, contradicting the
assumption that B is an EF1 allocation. Therefore, we must have |[X NG| < |Y NGy|. Thus,
there exists a bijection ¢ : X — Y such that ui(z) < ui(¢p(x)) for all x € X; this can be
obtained by ensuring that goods in X N G are mapped to goods in Y N G;. Exchanging x
and ¢(x) in A for any z € X will not make agent 1 envy agent 2 by more than one good.
Now, we consider two cases for agent 2. If |A3NGa| > |A1NG2/|, then agent 2 does not envy

29

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

agent 1 by more than one good after the exchange of any pair of goods. In particular, we can
exchange = and ¢(z) for any = € X, and we are done by induction. In the other case, we have
|A2 N Ga| < |A1 NG2|. We claim that there exists some x € X such that ua(¢(z)) < ug(x).
Suppose on the contrary that us(¢(x)) > ua(x) for all z € X. This means that ua(z) =0
for all z € X and ug(y) =1 for all y € Y, and hence |[Y NGa| — [X N Gz| =T > 1, where
T = |X| = |Y|. Then, we have

|Bo N Ga| = [((A2\ Y) U X) N Gs|
=|A3NGa| — Y NGyl + | X NGyl
<|A1NGo|—1
=|(B1\Y)UX)NGyl -1
=|B1NGy — Y NGa| +|X NG| —1<|BiNGe| —2,

which means that agent 2 envies agent 1 by more than one good in B, contradicting the
assumption that B is an EF1 allocation. Thus, ua(¢(x:)) < wua(x¢) for some xz; € X. In
particular, exchanging x; and ¢(x¢) in A does not make agent 2 envy agent 1 by more than
one good. Hence, exchanging x; € X and ¢(x;) € Y leads to an EF1 allocation, completing

the induction and therefore the proof. O

Since the EF1 exchange graph GPF! is a subgraph of the exchange graph G, the distance
between two allocations (in G) cannot be greater than the length of the shortest EF1 exchange

gEFl

path between the two allocations in . In Theorems 4.3.3 and 4.3.4, the polynomial-time

algorithms find EF1 exchange paths in GF¥! that are optimal in the exchange graph G; such

exchange paths must also be the shortest possible ones in GFF!.

4.4 Three or More Agents

In this section, we address the general case where there are more than two agents. We shall
see that this case is less tractable, both existentially and computationally.

Before we present our results on the EF1 exchange graph, we provide some insights on
finding the distance between two allocations regardless of EF1 considerations. Observe that
finding this distance for two agents is simple, as the distance equals the number of goods from
each of the two bundles that need to be exchanged. However, this task is not so trivial for
more agents—in fact, we shall show that it is NP-hard. To this end, we draw an interesting
connection between this distance and the maximum number of disjoint cycles in a graph
constructed based on the allocations. We start off by detailing how to construct such a
graph.

Let N, G, and § be given, and let A = (Ay,...,A,) and B = (By,...,B,) be two
allocations with size vector 5. Define G4 5 = (V.4 8, E4) as a directed multigraph consisting
of a set of vertices V43 = N and a set of (directed) edges E45 = {e1,...,en}. For each
ke {1,...,m}, the edge ej represents the good gi, and e;, = (4, j) if and only if g, € A; N B;,
i.e., gi is in agent 7’s bundle in A and in agent j’s bundle in B (possibly i = j). Note that for

every vertex i, its indegree is equal to its outdegree, which is equal to s;, the number of goods

30

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

in agent ¢’s bundle. Let €4 5 be the collection of partitions of E 4 5 into directed circuits;?

see Figure 4.1 for an illustration of possible partitions into directed circuits.

Figure 4.1: Illustration of possible partitions of a graph into directed circuits. The graph
has six vertices and nine edges. On the left figure, the partition consists of two directed
cycles: one of length 3 and one of length 6. On the right figure, the partition consists of three
directed cycles of length 3 each.

Note that € 4 5 is non-empty—for example, a partition of 4 5 into directed circuits can
be constructed in the following way: start with any vertex with an outdegree of at least 1,
traverse a path until some vertex v is encountered for the second time, remove the resulting
directed cycle from v to itself, and repeat on the remaining graph; the remaining graph
still satisfies the condition that every vertex has its indegree equal to its outdegree. Let
6273 = MaXCy geCp |C 48| be the maximum cardinality of such a partition. Note that a
partition with the maximum cardinality must consist only of directed cycles; otherwise, if it
contains a circuit that passes through a vertex more than once, we can break the circuit into
two smaller circuits, contradicting the fact that this partition has the maximum cardinality.

We claim that the distance between allocations A and B is m — cf4 B

Proposition 4.4.1. Let N, G, and § be given, and let A and B be two allocations with size

vector 5. Then, the distance between A and B is m — A

Proof. We have m > CjA,B since every partition in €4 5 is a partition of a set with cardinality
m, SO m — Cjﬁl,B > 0. We shall prove the result by strong induction on m — CZ’B. For the base
case, let A and B be given such that m — ¢y g = 0. This means that there exists a partition
Cap € €4 such that |Cq | =m = |E4p|. The only way that this is possible is when every
edge in E 4 is a self-loop. Thus, each good appears in the same agent’s bundle in A and B.
This means that A = B, and so the distance between A and B is 0 = m — B

For the inductive hypothesis, suppose that there exists a non-negative integer 7" such that
for all pairs of allocations A and B satisfying m — cyp=tloranyt € {0,...,T}, the distance
between A and B is t. For the inductive step, consider a pair of allocations A and B such
that m — c:"47 g =1+ 1. We shall prove that the distance between A and B is T + 1.

We first prove that the distance between A and B is at most 7'+ 1. Let Cq5 € €4
be such that m — [Cup| = T +1 > 0. Since |[E4p| > |Cap|, Cap contains at least one
directed circuit of length at least two. For notational simplicity, let one such directed circuit
be vg — v1 — -+ — vy = vg for some ¢ > 2, where e}, = (vg_1,vx) for k € {1,...,¢} without

loss of generality. From A, exchange gy—1 (in agent vs_o’s bundle) with gy (in agent vy_1’s

4Recall that a directed circuit is a non-empty walk such that the first vertex and the last vertex coincide;
we consider a self-loop to be a directed circuit as well.

31

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

bundle) to form the allocation A’. This removes the directed circuit vg — v1 — -+ = vy
but introduces two new directed circuits: vy_1 — vy_1 and vg — vi — -+ — Vp_g — Vg.
Thus, there exists a partition Ca g € €4 p such that |Ca gl = |Cap| + 1. This gives

m — |Ca | =T, and thus m — ¢y g < T. By the inductive hypothesis, the distance between
A’ and B is at most T'. Therefore, the distance between A and B (via A’) is at most 7'+ 1,
which is m — ¢ 5.

It remains to prove that the distance between A and B is at least T+ 1. Suppose on the
contrary that the distance between A and B is at most T'. Since Cap < m, A and B are
distinct allocations. Consider a shortest path between A and B on the exchange graph, and
let A’ be the allocation on this path adjacent to A. By assumption, the distance between A’
and B is t for some ¢ < T'. By the inductive hypothesis, m — CZ,’B =t. Let Cy g € €y 5 be
such that |C 4 g| = m — t; by definition of ¢y p» Car,p must consist only of directed cycles.
Now, since A and A’ are adjacent on the exchange graph, there exist distinct goods g, and g,
such that exchanging them in allocation A leads to the allocation A’. Let i4,i5,j4,78 € N
be such that e, = (i4,ig) and e, = (ju4,jB) are edges in E4p corresponding to goods
g and g, respectively (some of i, ig,ja,jg may coincide). Accordingly, we must have
edges e, = (jua,ip) and e; = (i4,jp) in B s (some of these edges may be self-loops). See

Figure 4.2 for an illustration.

A JA
> < e el v <
\\y m//
Cx < €y
e N
// \\
/ N
< : \ >
B JB

Figure 4.2: The exchange of goods g, and g,. The edges e, and e, correspond to the respective
goods in G4 s, while the edges e}, and eg/ correspond to those in G 4 3.

We consider two cases; in each case, we will construct a partition Cy 5 € €45 with at

least |C 4 | — 1 directed circuits.

e Case 1: ¢}, and ¢, belong to different cycles in C 5.
Let Dy = ja ~% ig — j4 and Dy, =iy BN jB — i be the cycles in Cy 3 containing
e}, and ey, respectively. Define C4 5 = (Car 5\ { Dz, Dy}) U{ina LNy NN T N
ia}, where ig — j4 and jg — i4 represent the corresponding (possibly empty) trails
in D, and Dy, respectively. Note that |C4 5| = |Ca g| — 1.

e Case 2: ¢} and ¢, belong to the same cycle in C 3.

/

Let D = j4 =2 ig > ig N js — jabethe cycle in Cu 5 containing e, and e;. Define
Cap = (Caup\{D})U{is 5 ig —>ia, ja RN TN ja}, where the — represents

the corresponding (possibly empty) trails in D. Note that |C4 5| = |Ca 5| + 1.

In either case, there exists a partition C 4 3 € € 4 5 of cardinality at least |C 4 g|—1 = m—t—1.
This means that c¢% g > m —t — 1, which implies that m — ¢’ 3 <t +1 < T + 1. However,

32

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

this contradicts the assumption that m — CQ,B =T + 1. Therefore, the distance between A
and B is at least T' 4 1, as desired. O

Having found a correspondence for the distance between two allocations, a natural ques-
tion is whether there exists an efficient algorithm to compute this distance. It turns out
that computing this distance is an NP-hard problem, so no polynomial-time algorithm exists
unless P = NP. We show this via a series of reductions.

We start by considering the decision problem DIRECTED TRIANGLE PARTITION: given a
directed graph with no directed cycles of length 1 or 2, determine whether there is a partition
of edges into triangles (i.e., directed cycles of length 3). This decision problem is NP-hard
via a reduction from 3SAT. The idea is similar to that used by Holyer (1981) in his proof of
the corresponding result for undirected graphs; the details are involved and can be found in

Appendix A.
Lemma 4.4.2. DIRECTED TRIANGLE PARTITION is NP-hard.
We now use Lemma 4.4.2 to show that computing ¢ ;5 is NP-hard.

Lemma 4.4.3. Given a directed graph such that for each vertex, its indegree and outdegree
are equal, computing the mazimum cardinality of a partition of the edges into directed cycles

1s an NP-hard problem.

Proof. The result follows from reducing DIRECTED TRIANGLE PARTITION to the problem of
deciding whether there exists a partition of the edges of a directed graph into |E|/3 directed
cycles. Let G = (V,E) be an instance of DIRECTED TRIANGLE PARTITION. If there is
some vertex with unequal indegree and outdegree, then G cannot be edge-partitioned into
triangles. Otherwise, since G does not have cycles of length 1 or 2 (by definition of DIRECTED
TRIANGLE PARTITION), the edges of G can be partitioned into triangles if and only if the
maximum cardinality of a partition of the edges into directed cycles is |E|/3. Since DIRECTED
TRIANGLE PARTITION is NP-hard by Lemma 4.4.2, so is the problem of finding the maximum

cardinality of a partition of the edges into directed cycles. O
Proposition 4.4.1 and Lemma 4.4.3 imply the following theorem.
Theorem 4.4.4. Finding the distance between two allocations is an NP-hard problem.

Proof. Start with an instance G = (V, E) of the problem described in Lemma 4.4.3, and
denote V' = {v1,...,v,}. We shall construct, in polynomial time, an instance of the problem
of finding the distance between two allocations. Let N = {1,...,n} be the set of agents,
G = {ge}eckr be the set of goods, and s; = |[{e € E | 3j € N, e = (v;,v;)}| be the size
of agent i’s bundle for each ¢ € N. The initial allocation A = (A4;,...,A4,) and target
allocation B = (Bi,...,B,) are such that 4; = {g. € G| 3j € N, e = (v;,v;) € E} and
B; ={g. € G| 3j € N, e = (vj,v;) € E} for each i € N. Note that this induces the graph
G 4,5 isomorphic to G. The distance between A and B is |E| — CZ’B by Proposition 4.4.1.
Therefore, if we can find this distance, then we can find ¢’ g, solving the problem instance
from Lemma 4.4.3.]

33

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

4.4.1 General Utilities

We now discuss properties of the EF1 exchange graph. The following result demonstrates

that deciding whether an EF1 exchange path exists is a PSPACE-complete problem.

Theorem 4.4.5. Deciding the existence of an EF1 exchange path between two EF'1 allocations
is PSPACE-complete.

Proof. First, we show membership in PSPACE—recall that PSPACE is the set of all decision
problems that can be solved by a deterministic polynomial-space Turing machine. We can
solve the problem non-deterministically by simply guessing an EF1 exchange path between
the two EF1 allocations. Since the total number of allocations is at most n™, if there exists
an EF1 exchange path between the two allocations, then there exists one with length at most
nm
bits). This shows that the problem is in NPSPACE, the set of all decision problems that can
be solved by a non-deterministic polynomial-space Turing machine. By Savitch’s Theorem,
NPSPACE C PSPACE (Savitch, 1970), which implies that this problem is in PSPACE.

To prove that our problem is PSPACE-hard, we shall reduce the PERFECT MATCHING

; such a path can be verified in polynomial space (i.e., using a polynomial number of

RECONFIGURATION problem for a balanced (undirected) bipartite graph to our problem.
Recall that the PERFECT MATCHING RECONFIGURATION problem is the task of deciding
if two perfect matchings of a balanced bipartite graph can be reached from each other via

a sequence of flips, i.e., given perfect matchings Mo and M of a balanced bipartite graph
G= (V E) whether there exists a sequence of perfect matchings Mo, Ml, . MT such that

o MT:M, and

e for each ¢t € {1 ., T}, there exist edges &l,e2,e3,¢t of G such that M;_1 \ M; =

{e}, e}, M, \ Mt 1 = {€2,¢}}, and e}ereje} forms a cycle.

The operation from M_l to Z\Z is called a flip, and we say that]\Z_l and]\Z are adja-
cent to each other. PERFECT MATCHING RECONFIGURATION is known to be PSPACE-
hard (Bonamy et al., 2019). Let |[V| = 2v, and let the two independent sets of G be
P = {P1,...,pv} and Q = {q1,...,qv}. For each i € {1,...,v}, let g, € Q be the ver-
tex adjacent to p; in Mg, and let ¢y, € Q be the vertex adjacent to p; in M. We shall show
that this problem instance can be reduced to an instance of deciding the existence of an EF1
exchange path between two EF1 allocations.

Define an instance of the EF1 exchange path problem as follows: let N = {0,1,...,v} be
the set of agents, G = {p1,...,Pv,q1,--.,qu,T1,72,73,74} be the set of goods, and the utility

function of each agent be
e ug(g) =0 for all g € G, and

o foric{1,...,v},

3 ifge {p}Ufa|{Pia} € E};
ui(g) =4 2 if g e {ri,ra,rs, rak;

0 otherwise.

34

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

In the initial allocation Ay, agent 0 has the bundle {ry,r2, 73,74} and agent i has the bundle
{pi,qr; } for each i € {1,...,v}. In the target allocation A, agent 0 again has the bundle
{ri,r2,73,74} and agent ¢ has the bundle {p;,qy,} for each i € {1,...,v}. Observe that
both allocations are EF1—agent 0 assigns zero utility to every bundle, while each agent
i€ {l,...,v} assigns a utility of 6 to her own bundle, a utility of at most 6 to the bundle of
every agent in {1,...,v}\ {¢}, and a utility of 6+2 to agent 0’s bundle. Clearly, this instance
can be constructed in polynomial time.

Suppose first that there exists a sequence of adjacent perfect matchings from]\70 to M.
Then each flip from]\Z,l to]\Z corresponds to an exchange in the EF1 exchange path
problem: if]\Z_l\]\z = {{pi,ax}, {pj, qr}} and]\Z\]\Z_l = {{pi, qr},{pj, g} }, then exchange
qr in agent i’s bundle with gy in agent j’s bundle. The new allocation is also EF1—as before,
agent 0 assigns zero utility to every bundle, while each agent i € {1,...,v} assigns a utility
of 6 to her own bundle, a utility of at most 6 to the bundle of every agent in {1,...,v}\ {i'},
and a utility of 6 4+ 2 to agent 0’s bundle. By performing the exchanges according to the flips
in sequence, we reach the target allocation. Therefore, an EF1 exchange path exists.

Conversely, assume that an EF1 exchange path exists between the initial allocation Ag
and the target allocation A. Consider the sequence of EF1 allocations Ag, A1, ..., Ar = A.
We show by induction that for every intermediate allocation A;, every agent i € {1,...,v}
assigns a utility of 6 to her own bundle (consisting of p; and g for some k), and agent 0
retains {r1,72,73,74}. The base case t = 0 is trivial. For the inductive case, suppose that
the statement is true for ¢ — 1. If some agent 7 € {1,...,v} attempts to exchange one of her
goods with a good from agent 0, then agent i’s new bundle has utility 5 but agent 0’s new
bundle has utility 6 + 3 for agent ¢, which violates EF1. Therefore, agent ¢« must exchange
goods with agent j for some j € {1,...,v}. Note that agent 0’s bundle is worth 6+ 2 to agent
i and 7, so agent ¢’s and j’s own bundles must be worth at least 6 to ¢ and j respectively. If
agent i gives p; to agent j, then agent j’s new bundle consists of p; (worth zero to her) and
some gy, which is worth at most 3 to her—this violates EF1. By the same reasoning, agent
j cannot give p; to agent 7. Therefore, they must exchange g in agent i’s bundle with g, in
agent j’s bundle. As agent i and j must have bundles worth at least 6 to each of them, g,
must be worth 3 to agent ¢ and g must be worth 3 to agent j. This completes the induction.

As a result, the perfect matchings My (corresponding to 4;_1) and M, (corresponding
to A;) must be adjacent to each other for all ¢, where M,;_4 \ M, = {{pi, @}, {Pj, a}} and
M, \ M;_q = {{pi-ae},{pj,qx}}. It follows that a sequence of adjacent perfect matchings
M(], Ml, . ,MT = M indeed exists. This completes the proof. O

Regarding the existence of optimal EF1 exchange paths, we shall show later in Theo-
rem 4.4.10 that the corresponding decision problem is NP-hard even for four agents with

identical utilities.

4.4.2 Identical Binary Utilities

We now consider the most restrictive class of utility functions in this chapter: those that are

identical and binary. We show that the EF1 exchange graph is connected for any number of

35

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

agents with such utility functions.

Theorem 4.4.6. Let an instance with n > 2 agents and identical binary utility functions be
given. Then, the EF1 exchange graph is connected. Moreover, an EF1 exchange path between

any two allocations can be found in polynomial time.

Proof. Let A and B be two EF1 allocations. Since every good is worth either 1 or 0 to every
agent, every agent’s bundle in A and B must have a utility of either |u(G)/n] or |u(G)/n|+1
(otherwise, the gap between the utilities of some two agents’ bundles is at least 2, and the
corresponding allocation is not EF1). Let N’ be the set of agents whose bundles in A and B
have different utilities. Note that half of the agents in N’ have bundles worth |u(G)/n] in A
and |u(G)/n] + 1 in B; the other half have bundles worth [u(G)/n| + 1 in A and |u(G)/n|
in B. If N' # &, let agent i € N’ be an agent with a bundle worth |u(G)/n] in A, and let
gi be a good with utility 0 in A;—this good exists because agent i has at least |u(G)/n|+1
goods in her bundle (due to B;’s utility of [u(G)/n]+ 1) but only has utility |u(G)/n] in A;.
Let agent j € N’ be an agent with a bundle worth |u(G)/n| + 1 in A, and let g; be a good
with utility 1 in A;—this good exists because A; has utility at least 1. Exchange g; with g;;
it can be verified that the resulting allocation is EF1. As this exchange reduces the size of
the set N’ by two, we can repeatedly make such exchanges between two agents in N’ until
N’ = @. Note that such exchanges can be performed in polynomial time.

At this point, we have shown that there exists an EF1 allocation A’ such that an EF1
exchange path exists between A and A’, and for every agent 4, her bundles in A" and B have
the same utility. Define the item graph G 4 5 as in the beginning of Section 4.4, and consider
its subgraph with only the edges representing the goods with utility 1. For each agent, the
indegree and the outdegree of the corresponding vertex in this subgraph are equal, so we can
perform exchanges to ‘resolve’ these edges. Specifically, suppose there is an edge e, = (i, j)
corresponding to a good g,, where i # j. By the degree condition, there must exist another
edge ey = (j, k) corresponding to a good g,, where j # k but possibly k = i. We let agents
¢ and j exchange g, and gy, so g, is now with its correct owner, agent j. Hence, at least
one more good goes to the correct agent after the exchange. This exchange process can be
performed in polynomial time, and no agent’s utility changes during the process, which means
that the intermediate allocations are all EF1. Similarly, if we consider the subgraph with
only the edges representing the goods with utility 0, we can perform exchanges to resolve
these edges as well. Therefore, there exists an EF1 exchange path from A’ to B, and thus an
EF1 exchange path from A to B, and this path can be found in polynomial time. O

In spite of this positive result, the polynomial-time algorithm described in Theorem 4.4.6
does not necessarily find an optimal EF1 exchange path between the two allocations. In
fact, even for the special case where the EF1 exchange graph GF¥! and the exchange graph
G coincide (e.g., when every agent assigns zero utility to every good, so every allocation is
EF1), it is NP-hard to compute an optimal EF1 exchange path by Theorem 4.4.4, regardless

gEFl

of whether optimality refers to the length of the shortest path in G or in Hence, a

polynomial-time algorithm for this task does not exist unless P = NP. Moreover, we show

36

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

next that, somewhat surprisingly, an optimal EF1 exchange path (with respect to G) is not

guaranteed to exist even for identical binary utilities.

Theorem 4.4.7. For each n > 3, there exists an instance with n agents with identical binary
utility functions satisfying the following properties: the EF1 exchange graph is connected, but

for some pair of EF1 allocations, no optimal EF1 exchange path exists between them.

Proof. For n = 3 agents, consider §= (2,2,2) and the utility of the goods as follows:

9 ‘91 92 93 94 95 96
w1 1 1 0 0 0

Note that the EF1 exchange graph is connected by Theorem 4.4.6. We prove that an optimal
EF1 exchange path between A and B does not exist, where 41 = {g2,96}, 42 = {93,94},
As = {q1,95}, and B; = {g;,gi+3} for i € {1,2,3}—it can be verified that both A and B
are EF1, and the distance between A and B is 3 (through exchanging g1 < g¢, g2 < 9,
and g3 <> g5). Consider any EF1 exchange path between A and B, and let A’ be the EF1
allocation adjacent to A on the exchange path. If a valuable good (g1, g2, or g3) is exchanged
with a non-valuable good (g4, g5, or g¢) from A to reach A’, then one agent has utility 0 and
another agent has utility 2, which means that A’ is not EF1. Therefore, the only exchanges
possible from A are between valuable goods or between non-valuable goods. However, any of
these exchanges causes at most one good to go to the correct bundle according to B, so there
are at least five goods in A’ in the wrong bundle according to B. As any exchange of goods
reduces the number of goods in the wrong bundle by at most two, the distance between A’
and B is at least 3. This means that the distance between A and B is at least 4. It follows
that no optimal EF1 exchange path exists between A and B.

For n > 3 agents, simply add n — 3 dummy agents who have the same utility function as

the three original agents and have empty bundles. O

4.4.3 Binary Utilities

We saw in Theorem 4.4.6 that the EF1 exchange graph is always connected for any number
of agents with identical binary utilities. Now, we consider the case where the agents have
binary utilities which may differ between agents. It turns out that the EF1 exchange graph is
not necessarily connected in this case, even when there are three agents. This also provides

a contrast to the case of two agents (Theorem 4.3.4).

Theorem 4.4.8. For each n > 3, there exists an instance with n agents with binary utility

functions such that the EF1 exchange graph is disconnected.

Proof. For n = 3 agents, consider the utility of the goods as follows:

9 ‘ g1 92 93 Y4
ui(g) | 10 1 0
w(g) |1 0 1 0
us(g) | 0 1 1 0

37

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

Let A and B be given such that Ay = {g1, 92}, A2 = {93,914}, B1 = {93, 94}, B2 = {91, 92},
and A3 = B3 = @—it can be verified that both A and B are EF1. Consider any EF1
exchange path between A and B, and let A" be the EF1 allocation adjacent to A on the
exchange path. We claim that A’ cannot exist. The only possible exchanges from A are
Gi <> gs—i Or g; <> giyo for some i € {1,2}. If g; is exchanged with g5_;, then agent i’s bundle
has zero utility from agent i’s perspective while agent (3 —3)’s bundle has utility 2 from agent
i’s perspective, so agent i envies agent (3 — i) by more than one good. On the other hand, if
gi is exchanged with g;49, then agent ¢’s bundle has utility 2 from agent 3’s perspective, and
since agent 3 has an empty bundle, agent 3 envies agent ¢ by more than one good. Therefore,
A’ does not exist, which contradicts the assumption that the path is an EF1 exchange path.
It follows that no EF1 exchange path exists between A and B.

For n > 3 agents, simply add dummy agents who assign zero value to every good and

have empty bundles. O

4.4.4 Identical Utilities

Let us now consider the case where the utilities are identical across agents, though they need
not be binary. As with the case of binary utilities, there are instances in which the EF1

exchange graph is not connected even for three agents.

Theorem 4.4.9. For each n > 3, there exists an instance with n agents with identical utility

functions such that the EF1 exchange graph is disconnected.

Proof. For n = 3 agents, consider the utility of the goods as follows:

9 ‘91 92 93 94 95 G6 g1
ulg) [4 3 1 4 2 2 4

Let A and B be given such that A1 = {g1,92,93}, A2 = {94,95,96}, B1 = {91,95,96},
By = {g2,93,94}, and A3 = B3 = {g7}. It can be verified that both A and B are EF1.
Consider any exchange path from A to B. At some point, a good g € {g2, 93, 95,96} has to
be exchanged, but this will inevitably cause agent 3 to envy agent 1 or agent 2 by more than
one good, so the exchange path cannot be EF1. Therefore, no EF1 exchange path exists
between A and B.

For n > 3 agents, simply add n — 3 agents who have the same utility function as the three
original agents and n — 3 goods with value 4 each, and allocate each of these goods to one of
these n — 3 agents in both A4 and B. O

We end this section with a result that determining whether an optimal EF1 exchange
path exists between two allocations is NP-hard even for four agents with identical valuations.

This can be shown via a reduction from the NP-hard problem PARTITION.

Theorem 4.4.10. Deciding the existence of an optimal EF1 exchange path between two EF1

allocations is NP-hard, even for n = 4 agents with identical utility functions.

Proof. We shall reduce the NP-hard problem PARTITION to this problem. Recall that the
PARTITION problem is the task of deciding whether a multiset X = {z1,...,z,} of positive

38

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

integers can be partitioned into two subsets such that the sum of the integers in one subset
is equal to that in the other subset. Let the sum of all the integers in X be 25.

Define an instance of the EF1 exchange path problem with n = 4 agents and the set of
goods G = {ag,ai,...,aq,b0,b1,...,bg,c1,c2,d1,da}. The utility of each good is defined as

follows:
e u(ag) = u(by) = u(cr) = 25,
o u(di) = u(dy) = 5,
o u(a;) =uxz; for alli e {1,...,q},
o u(bj) =u(cz) =0forallie{l,... q}.

The initial allocation A = (A1, Ag, A3, A4) and the target allocation B = (B1, Ba, B3, By)
are given by A1 = {ao,a1,...,aq}, A2 = {bo,b1,...,bs}, B1 = {ao,b1,...,bs}, B2 =
{bo,ai,...,aq}, A3 = By = {c1,c2}, and Ay = B3z = {d1,d2}—it can be verified that both
A and B are EF1. Note that this instance can be constructed in polynomial time, and the
distance between A and B is ¢ + 2.

First, suppose that X can be partitioned into two subsets of sum S each, say {x;,,...,z;,}

has sum S. We perform the following exchanges starting from A:

e First, exchange {a;,,...,a;} with {b;,...,b;,} pair-by-pair. At this point, agents 1
and 2 have bundles worth 35 each, and agents 3 and 4 have bundles worth 25 each.

e Next, exchange ¢; with di, and exchange co with ds.

e Finally, exchange {a1,...,aq} \ {@i,,...,a;,} with {b1,...,bq} \ {bi,,...,b;,} pair-by-

pair.

The allocation resulting from this sequence of exchanges is B. It can be verified that this
exchange path has length ¢+ 2 and every intermediate allocation is EF1. Hence, there exists
an optimal EF1 exchange path between A and B.

Conversely, suppose that there exists an optimal EF1 exchange path between A and B.
The only exchanges possible are a; <> b; for some 4,5 € {1,...,q} and ¢; > d; for some
i,j € {1,2}. In particular, at some point, ¢; must be exchanged with d; for the first time for
some 4,7 € {1,2}. Consider the allocation following this exchange. One of agents 3 and 4
now has utility only S. By assumption, this allocation is EF1, so this agent does not envy
agent 1 and agent 2. Removing the highest-utility good from agent 1’s and agent 2’s bundle
(i.e., ap and by), the utility of each of the remaining bundles must be at most S. The only
way this is possible is that {a1,...,as} can be partitioned into two subsets such that the
utility of each subset is exactly S, and each of agents 1 and 2 receives exactly one of those
subsets. Correspondingly, this shows that X can be partitioned into two subsets of sum §
each. O

39

Chapter 4: Reachability of Fair Allocations via Sequential Exchanges

4.5 Conclusion

In this chapter, we have initiated the study of reachability problems in fair division by in-
vestigating the connectivity of the EF1 exchange graph and the optimality of EF1 exchange
paths. We showed that even for two agents, an EF1 exchange path between two given EF1
allocations does not necessarily exist. On the positive side, such a path always exists if
both agents have identical or binary utility functions—in these cases, we can also ensure
an optimal path regardless of EF1 considerations, and the path can be found in polynomial
time. For three or more agents, however, the problem becomes much less tractable, both
in terms of existence and computation. In particular, we proved that finding the smallest
number of exchanges between two allocations is NP-hard even if we were to ignore the EF1
constraints, and deciding whether an EF1 exchange path between two allocations exists is
PSPACE-complete. Moreover, the existence of an EF1 exchange path cannot be guaranteed
even if the utilities are identical or binary, although such a guarantee is possible if the utilities
are identical and binary.

This chapter leaves several questions and directions for future research. Firstly, while
determining the existence of an EF1 exchange path between two given allocations is PSPACE-
complete in general, an intriguing question is whether this can be done in polynomial time
for two agents. One could also ask whether near-optimal EF1 exchange paths are possible
for general utilities or for three or more agents. In addition, for the negative results obtained
in this chapter, one could ask whether an (optimal or otherwise) exchange path between
EF1 allocations exists if we allow the intermediate allocations to be envy-free up to k goods
(EFk) for some small k& > 1. Extending our results to fairness notions other than EF1 is
also a meaningful direction. Finally, in addition to (or instead of) exchanging goods between
agents, one may also consider the setting where an agent transfers one good to another agent

in each operation—in this case, the size of the allocation does not need to be fixed.

40

Chapter 5

Reforming an Unfair Allocation by

Exchanging Goods

5.1 Introduction

The fair division literature typically assumes that there is a set of unallocated goods and
the objective is to allocate them fairly. In certain scenarios, however, an existing (possibly
unfair) allocation of the goods is already in place, and the goal is to “reform” it in order
to arrive at a fair allocation. This is the case, for instance, when new office occupants or
dormitory residents move in at the beginning of an academic year—their preferences over the
books, paintings, or furniture in their rooms may well differ from those of their predecessors,
which makes the existing allocation unfair from their perspective. Moreover, even when the
ownership of goods remains unchanged, the owners’ preferences can still undergo changes over
time. For example, consider the distribution of personnel among teams in an organization.
As the personnel experience individual growth or decline, and as the needs of the teams
evolve, these changes can necessitate a reevaluation and potential reformation of the current
distribution.

In this chapter, we shall allow agents to exchange pairs of goods in the reformation process,
and use envy-freeness up to one good (EF1) as our fairness criterion. Exchanges preserve
the size of each agent’s bundle, thereby ensuring that any cardinality constraints remain
fulfilled. Note that capacity constraints are prevalent in fair division applications and have
accordingly received interest in the literature (Biswas and Barman, 2018; Wu et al., 2021;
Hummel and Hetland, 2022; Shoshan et al., 2023). Naturally, given an initial allocation, we
wish to reach an EF1 allocation using a small number of exchanges. However, it is sometimes
impossible to reach an EF1 allocation via any finite number of exchanges, so we start by
exploring whether the corresponding decision problem can be answered efficiently. Since this
problem is equivalent to determining whether an EF1 allocation with a certain size vector
exists in a given instance, it is meaningful independently of exchange considerations.! We

also investigate other fundamental questions in this setting. Namely, if it is possible to reach

When an EF1 allocation is not guaranteed to exist in all instances due to cardinality requirements, an
approach taken by previous work is to relax the EF1 condition (e.g., Wu et al., 2021). However, this leads to
unnecessarily weak guarantees in instances where EF1 can be attained.

41

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

an EF1 allocation, can we efficiently determine the smallest number of exchanges required
to achieve this goal? And how many exchanges might we need to make in the worst case in
order to attain EF17

5.1.1 Our Results

In our model, there is an initial allocation of a set of goods. As is often assumed in fair
division, each agent has an additive utility function over the goods. At each step of the
reformation process, two agents can exchange a pair of goods with each other to obtain
another allocation, and the goal is to reach an EF1 allocation at the end of the process. More
details on our model are provided in Section 5.2.

In Section 5.3, we consider the decision problem of determining whether a given initial
allocation can be reformed into an EF1 allocation. As mentioned earlier, this problem is
equivalent to determining whether an EF1 allocation with a given size vector exists, so we
focus on the latter decision problem instead. We demonstrate interesting distinctions in the
complexity based on the number of agents and their utility functions. Specifically, in the
case of two agents, the problem can be solved in polynomial time if the agents have identical
utilities, but becomes (weakly) NP-hard otherwise. For three or more agents, the problem is
NP-hard even with identical utilities; however, it can be solved efficiently when the utilities
are binary provided that the number of agents is constant. Finally, for an arbitrary (non-
constant) number of agents, the problem is strongly NP-hard even for identical or binary
utilities, but can be solved in polynomial time if the utilities are identical and binary. The

results of this section are summarized in Table 5.1.

utilities general identical binary identical binary
n=2 wNDP— (Th. 53.3) | P (Th. 5.3.2) P (Th. 5.3.7) P (Th. 5.3.7)
constant n > 3 || wNP-c (Th. 5.3.5) | wNP-c (Th. 5.3.5) P (Th. 5.3.7) P (Th. 5.3.7)
general n sNP-c (Th. 5.3.8) | sNP-c (Th. 5.3.8) | sNP-c (Th. 5.3.9) | P (Th. 5.3.10)

Table 5.1: Computational complexity of REFORMABILITY, or equivalently, deciding whether
an EF1 allocation with a given size vector exists in a given instance. The top row represents
the class of utility functions considered. The leftmost column represents the number of agents.
“sNP-¢” and “wNP-¢” stand for strongly NP-complete and weakly NP-complete, respectively.

Having determined the reformability of the initial allocation, we next explore the problem
of computing the optimal (i.e., minimum) number of exchanges required to reach an EF1
allocation in Section 5.4. For (a) two agents with identical utilities, (b) a constant number
of agents with binary utilities, and (c¢) any number of agents with identical binary utilities,
we show that this computational problem can be solved in polynomial time, just like the
corresponding decision problem in Section 5.3. For the remaining scenarios, since deciding
whether an allocation is reformable is already NP-hard (from Section 5.3), we instead focus
on the special case where the allocation is balanced—an EF1 allocation is guaranteed to be
reachable in this case (see Proposition 5.2.1). We show that the computational problem for
this special case remains NP-hard. The results of this section are summarized in Table 5.2.

Finally, in Section 5.5, instead of considering specific instances, we derive worst-case

bounds on the number of exchanges necessary in order to reach an EF1 allocation. We

42

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

utilities general identical binary identical binary

n=2 NP-L (Th. 5.42) | P (Th. 5.4.1) P (Th. 5.4.5) P (Th. 5.4.5)
constant n > 3 || NP-h (Th. 5.4.3) | NP-h (Th. 5.4.3) | P (Th. 5.4.5) P (Th. 5.4.5)
general n NP-L (Th. 5.4.3) | NP-h (Th. 5.4.3) | NP-h (Th. 54.6) | P (Th. 5.4.7)

Table 5.2: Computational complexity of OPTIMAL EXCHANGES. The top row represents the

class of utility functions considered. The leftmost column represents the number of agents.
“NP-h” stands for NP-hard.

assume that each of the n agents possesses s goods—this again ensures that an EF1 allocation
is reachable. We show that roughly s(n—1)/2 exchanges always suffice. Moreover, our bound
is essentially tight for any n and s, and exactly tight when n = 2 as well as when s is divisible

by n.

5.1.2 Related Work

As mentioned earlier, the majority of work in fair division assumes that there is no initial
allocation of the resources—we now discuss the key exceptions and their differences from
our model. Boehmer et al. (2022) studied the problem of discarding goods from an initial
allocation in order to reach an envy-free or EF1 allocation. As it is possible to reallocate
the goods in several practical situations, discarding them can be unnecessarily wasteful for
the agents involved. In a similar vein, Dorn et al. (2021) investigated deleting goods to
attain another fairness notion called proportionality; they assumed that agents have ordinal
preferences (rather than cardinal utilities) over the goods, and considered both the settings
with and without an initial allocation.? Aziz et al. (2019) focused on reallocating goods
to make agents better off, but did not delve into the aspect of fairness. Chapter 4 aimed
to transition from an initial allocation to a target allocation, both of which are EF1, while
maintaining EF1 throughout the process. Segal-Halevi (2022) considered the reallocation of
a divisible good and explored the trade-off between guaranteeing a minimum utility for every
agent and ensuring each agent a certain fraction of her original utility.

Further afield, the idea of improving an initial allocation has also been examined when
each agent receives only one good, a setting sometimes known as a housing market. Gourvés
et al. (2017) assumed an underlying social network and allowed beneficial exchanges between
agents who are neighbors in the network; their work led to a series of follow-up papers
on similar models (Huang and Xiao, 2020; Li et al., 2021; Miiller and Bentert, 2021; Ito
et al., 2023). Note that these papers did not take fairness considerations into account. Ito
et al. (2022) incorporated fairness in the form of envy-freeness into this setting—starting
with an envy-free allocation, they let each agent exchange her current good with a preferred

unassigned good as long as the exchange keeps the allocation envy-free.

ZWhen there is no initial allocation, Dorn et al. (2021) considered deleting goods so that a proportional
allocation of the remaining goods exists. In an earlier work, Aziz et al. (2016) examined discarding or adding
goods to achieve envy-freeness, also in the absence of an initial allocation and under ordinal preferences.

43

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

5.2 Preliminaries

Refer to the preliminaries in Sections 2.1 and 2.2. We now describe other preliminaries specific
to this chapter.

A size vector §= (s1,...,5sy) is balanced if |s; — s;| <1 for all ¢, j € N, and an allocation
is balanced if it has a balanced size vector. We use Z to denote a fair division instance.

Given an instance and two allocations A and B in the instance, we say that A can be
reformed into B if there exists an exchange path between the two allocations on the exchange
graph G. The optimal number of exchanges required to reach B from A is the distance
between A and B on the exchange graph G.

We state a simple proposition that characterizes the existence of EF1 allocations based

on the size vector.
Proposition 5.2.1. Let §= (s1,...,8y), and let m =Y ;" | s;.

(a) If §is balanced, then every instance with n agents and m goods admits an EF1 allocation

with size vector §.

(b) If § is not balanced, then there exists an instance with n agents and m goods that does

not admit any EF1 allocation with size vector §.

Proof. (a) An EF1 allocation can be guaranteed by allowing agents to pick their favorite
goods in a round-robin fashion, with agents with higher s; (if any) starting before those

with lower s;, until each agent ¢ has s; goods.

(b) Let Z be an instance with m goods such that u;(g) =1 for all i € N and g € G. Let
A be any allocation with size vector §. Since § is not balanced, there exist distinct
i,j € N such that s; —s; > 2. Then, we have |4;| = s; >0, so A; # @. Furthermore,
ui(Ai) = s < s; —1 =u;(A; \ {g}) for all g € A;. This shows that agent ¢ is not EF1
towards agent j, and so A is not EF1. Therefore, Z does not admit an EF1 allocation

with size vector §. O

Finally, we introduce an NP-hard decision problem called the BALANCED MULTI-PARTI-
TION problem, which we will use later in the proofs of several results. In BALANCED MULTI-
PARTITION, we are given positive integers p, ¢, K and a multiset of positive integers X =
{z1,...,2pq} such that K < x; <2K for all j € {1,...,pgq}, and the sum of all the integers
in X is p(q + 1)K. The problem is to decide whether X can be partitioned into multisets
Xi,..., X, of equal cardinalities and sums, i.e., for each i € {1,...,p}, the cardinality of X;
is ¢, and the sum of all the integers in X; is (¢ + 1) K. The NP-hardness of this problem is
based on a reduction from the equal-cardinality version of the NP-hard problem PARTITION
(Garey and Johnson, 1979, p. 223).

Proposition 5.2.2. For any fized p > 2, BALANCED MULTI-PARTITION is NP-hard.
Proof. We shall prove NP-hardness via a series of reductions from the equal-cardinality ver-

sion of PARTITION. In this version, we are given positive integers ¢, K’ and a multiset of

44

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

positive integers W = {wq,...,waq} such that the sum of the integers in W is 2K’. The
problem is to decide whether W can be partitioned into multisets W7 and Ws of equal cardi-
nalities and sums. This problem is known to be NP-hard (Garey and Johnson, 1979, p. 223).

Let an instance of the equal-cardinality version of PARTITION be given, and let p > 2 be
a fixed integer. If some integer in W is more than K’, then W cannot be partitioned into
the desired multisets; therefore, we assume that every integer in W is at most K’. Define a
multiset W = {w; | j € {2¢+1,...,2¢+ (p—2)}} such that w; = K’ for all w; € W; define
a multiset WO = {w; | j € {2¢ + (p —2) + 1,...,pq}} such that w; = 0 for all w; € WY
and define W/ = W U W' U W?°. Essentially, we are adding p — 2 copies of the number K’
and sufficiently many copies of the number 0 so that the total number of elements in W’ is
pq. Note that every integer in W’ is at most K’, and the sum of all the elements in W' is
pK'. We claim that W' can be partitioned into multisets W7y,..., W) of equal cardinalities
and sums (i.e., each W/ has cardinality ¢ and sum K') if and only if W can be partitioned
into multisets W7 and W5 of equal cardinalities and sums.

(<) If we are given a partition into multisets Wi and Wa, let W| = Wy, let W5 = Wa,
and let W/ contain one element from Wt and g —1 elements from W for each i € {3,...,p}.
Each of W7, ..., W) has q elements with sum K'. This gives a desired partition of W’

(=) Assume that we are given a partition into multisets W7, ..., W}. If some W/ contains
at least two elements in W1, then the sum of W/ is more than K’, which is not possible.

7

Therefore, every W/ contains at most one element in W?!. Furthermore, for each W/ con-
taining some element in W1, if it contains some element in W, then its sum would exceed
K', which is again not possible. Therefore, there are p — 2 of the W/ such that each of them
contains one element from W' and ¢ — 1 elements from W9. This means that two of the w/!
contain exactly the elements in W. These two W/ induce the desired partition into W; and
Wy of W.

Now, define an instance of BALANCED MULTI-PARTITION as follows. Let K = K’ + ¢,
and let X = {z1,...,2,} be such that z; = w; + K + 1 for all j € {1,...,pg}. For each
Jje{l,...,pq}, since 0 < w; < K', we have K < z; < K'+ K +1 < 2K. The sum of all
integers in X is pK' + pq(K + 1) = p(¢ + 1)K. Tt is clear that X can be partitioned into
multisets X1, ..., X, of equal cardinalities and sums if and only if W’ can be partitioned into
multisets W7, ..., W, of equal cardinalities and sums, since the difference between z; and w;
is the same for all j. Note that the reductions in this proof can all be done in polynomial

time. This proves the NP-hardness of BALANCED MULTI-PARTITION.]

5.3 Reformability of Allocations

We start by investigating the decision problem of whether a given initial allocation can be
reformed into an EF1 allocation. By Proposition 2.2.1, this reformation is possible if and only
if there exists an EF1 allocation with the same size vector as the initial allocation. Therefore,
in the rest of this section, we shall equivalently focus on the problem of deciding the existence
of an EF1 allocation with a given size vector—this problem can be of interest independently

of reformation considerations, e.g., when space constraints are present.

45

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Now, Proposition 5.2.1 tells us that an EF1 allocation with a balanced size vector always
exists. This means that the only time when we may have difficulties in ascertaining whether
an EF1 allocation exists is when the given size vector is not balanced. In fact, as some of
our proofs in this section show, the decision problem is NP-hard even when the sizes of the
agents’ bundles differ by at most two (e.g., in Theorem 5.3.3).

We discuss the cases of two agents, a constant number of agents, and a general number
of agents separately. For each of these cases, we explore how the hardness of the decision
problem varies across different classes of utility functions. Our results are summarized in
Table 5.1.

For convenience, we refer to as REFORMABILITY the problem of deciding whether an EF1
allocation with a given size vector exists in a given instance. Note that REFORMABILITY is
in NP regardless of the number of agents, as we can verify whether a given allocation is EF1

in polynomial time by simply comparing the bundles of every pair of agents.

5.3.1 Two Agents

For two agents, interestingly, the computational complexity of the problem turns out to
be different depending on whether the agents have identical utilities or not. We begin our
discussion with the case of identical utilities. For two agents with identical utilities, we first
provide a simple characterization for checking whether a desired EF1 allocation exists based
on the size vector and the utilities of the goods. We show that an EF1 allocation with a given
size vector exists if and only if the agent with a smaller number of goods is EF1 towards the
other agent in the allocation where the former agent receives the most valuable goods. Note

that it is not required to check that the latter agent is EF1 towards the former agent.

Lemma 5.3.1. Given an instance with two agents with identical utilities, let § = (s1,s2) be
a size vector with s1 < sy. Assume that the goods gi,...,gm are arranged in non-increasing
order of utility, and let Go = {g1,...,9s,}. Then, there exists an EF1 allocation with size
vector § if and only if agent 1 is EF1 towards agent 2 in the allocation (Go, G \ Go).

Proof. We say in this proof that for any nonempty set G’ C G, the good ¢g; € G’ is the
most valuable good in G’ if g; is the good with the smallest index in G’; likewise, g; is the
least valuable good in G’ if g; is the good with the largest index in G’. Note that the most
(resp. least) valuable good in G’ is the one with the highest (resp. lowest) utility among all
the goods in G’, with ties broken by index.

(=) Let (A1, A2) be an EF1 allocation with size vector §. If A; = Gy, then we are done;
therefore, assume that A; # Gy. By definition, agent 1 is EF1 towards agent 2 in (Aj, A2).
We show that for any allocation (Bj, By) where By # Gy, if agent 1 is EF1 towards agent
2, then exchanging the least valuable good in B; with the most valuable good in By leads
to an allocation where agent 1 is still EF1 towards agent 2. By repeating this procedure on
(A1, Ag), we eventually arrive at the allocation (G, G\ Gp) and the conclusion that agent 1
is EF1 towards agent 2 in the latter allocation.

Let hy € B; be the least valuable good in agent 1’s bundle, and hy € B be the most
valuable good in agent 2’s bundle. Since By # Go, we have hy € G\ Gy and hy € Gy, and

46

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

hence u(hg) > u(hy). Since agent 1 is EF1 towards agent 2, we have u(By) > u(Ba \ {ha}).
Let B} = (B1U{ha})\{h1} and B, = (BaU{h1})\ {h2} be the bundles after exchanging h;
and hy. Then,

w(By) = u((B1 U {h2}) \ {h1})
(B1) + u(h2) — u(h1)
(B1)
(
(

Vv
e 2

v

u

By \ {h2})
u(By \ {h1}),

which means that agent 1 is EF1 towards agent 2 in (B, BY).

(<) Suppose that agent 1 is EF1 towards agent 2 in the allocation (Go,G \ Go). If
agent 2 is also EF1 towards agent 1 in (Go, G \ Go), then we are done; therefore, assume
that agent 2 envies agent 1 by more than one good. For notational simplicity, let h; =
gsi+; for j € {1,...,s1}, so that the goods arranged in non-increasing order of utility are
G15925 > Gs1> D1, hay oo Bsy s 9251415 - -+ Gm- Let Al = Go = {g1,...,9s, } and A} = G\ Gg =

{h17 SR hsl} U {92514-17 cee 7gm}‘
Let t = 1. In the allocation (A}, AY), agent 1 is EF1 towards agent 2, but agent 2

envies agent 1 by more than one good. Since g; is the most valuable good in AY, we have
u(Ab) < u(Af\ {ge}). Let AT = (AU {he}) \ {g:} and A5™" = (A5 U {g;}) \ {Ae} be the

bundles after exchanging g; and h;. Then, we have
U(A‘i“) u((A7 U {he}) \ {ge})

(

(A1 \ {g:})
(43)
(

(

Q

vV
:

(A5 U () \ o))
A5\ {ae}),

=Uu

>u

so agent 1 is EF1 towards agent 2 in (Atlﬂ, A;H). If agent 2 is also EF1 towards agent 1,
then (Aﬁ“, A?l) is an EF1 allocation and we are done. Otherwise, agent 2 envies agent 1
by more than one good, and we increment ¢ by 1 and repeat the discussion in this paragraph.
If we still have not found an EF1 allocation after ¢ = sy, then agent 1 is EF1 towards
agent 2 in (A‘?H,A;l“), where A‘?H = {h1,...,hsg} C Al and A;lH ={g1,.--,9s,} U
{g2s1415 -+, gm} 2 A}, and g; is the most valuable good in A;1+1. This implies that

u(A7T) < u(A)) < u(Ai\ {or}) < u(A37\ {a1)),

which means that agent 1 is not EF1 towards agent 2 in (A?H, A;lﬂ). This is a contradic-
tion; therefore, (A%, AL) must be EF1 for some ¢ € {1,...,51}. O

Since the condition in Lemma 5.3.1 can be checked in polynomial time, we can derive the

following result.

47

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Theorem 5.3.2. REFORMABILITY is in P for two agents with identical utilities.

Proof. Without loss of generality, let the size vector be (s1,s2) with s1 < sg. Arrange the
goods g1, - .., gm in non-increasing order of utility, and let Gg be the set of s1 goods with the
highest utilities. By Lemma 5.3.1, there exists an EF1 allocation with size vector (s, s2) if
and only if agent 1 is EF1 towards agent 2 in the allocation (Go, G\ Gp). The latter condition

can be checked in polynomial time. O

While deciding whether an EF1 allocation with the given size vector exists can be done
efficiently for two agents with identical utilities, we remark here that deciding whether an
envy-free allocation exists is NP-hard for two agents with identical utilities even if we allow
any size vector—this follows directly from a reduction from PARTITION.?

We now proceed to general utilities. Lemma 5.3.1 assumes identical utilities, and there
is no obvious way to generalize it to non-identical utilities. In fact, perhaps surprisingly, we
show that the decision problem becomes NP-hard when we drop the assumption of identical
utilities. The proof follows from a reduction from BALANCED MULTI-PARTITION with p = 2,
an NP-hard problem by Proposition 5.2.2.

Theorem 5.3.3. REFORMABILITY is weakly NP-complete for two agents.

Proof. Clearly, this problem is in NP. The “weak” aspect is demonstrated later in Lemma
5.3.4, which says that there exists a pseudopolynomial-time algorithm that solves this problem
for any constant number of agents. Therefore, it suffices to show that this problem is NP-hard.

To demonstrate NP-hardness, we shall reduce from the NP-hard problem BALANCED
MULTI-PARTITION with p = 2 (see Proposition 5.2.2). Let a BALANCED MULTI-PARTITION
instance be given with p = 2. Without loss of generality, assume that ¢ > 2. Let Y =
{y1,...,Y2¢42} be a multiset such that y; = z; for j € {1,...,2¢q}, yag+1 = 2K, and yog12 =
0. We claim that Y can be partitioned into two multisets Y7 and Y5 of equal cardinalities
(i.e., of size ¢ + 1 each) with sums (¢ + 3)K and (g + 1)K respectively if and only if X can
be partitioned into two multisets X; and X5 of equal cardinalities and sums. If the latter
condition is true, then let Y7 (resp. Y3) contain the corresponding elements in X (resp. Xa),
and let Y2441 € Y7 and y9442 € Yo—this gives an appropriate partition of Y. Conversely, if
the former condition is true, then we show that X can be partitioned appropriately. Note
that if yog+1 € Y2, then there are at least ¢ — 1 > 0 integers in {y1,...,y2,} that are also
in Y5. Since every integer in {y1,...,y2,} is more than K, the sum of Y5 will be more than
(¢g— 1)K +2K = (¢+ 1)K, which is a contradiction. This means that y2,41 € Y;. Similarly,
if Y2412 € Y7, then there are exactly ¢+ 1 integers in {y1,...,y24} that are in Y5. The sum of
Y> will be more than (¢+ 1)K, which is a contradiction. Hence, y2412 € Y2. Now, this means
that {y1,...,y2q} must be partitioned into two multisets of equal cardinalities (i.e., of size ¢
each) with sum (¢ + 1)K each. This induces an appropriate partition of X.

Next, define a fair division instance as follows. There are n = 2 agents and a set of
goods G = {g1,...,92g+6}. Agent 2’s utility is such that us(g;) = y; for j € {1,...,2q + 2},
u2(g2¢+3) = u2(g2g+4) = 0, and ua(g24+5) = u2(g2q+6) = 2K. Agent 1’s utility is such that

3If we require both agents to receive the same number of goods, the problem for envy-freeness remains
NP-hard by a reduction from an equal-cardinality version of PARTITION.

48

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

ui(g) = wua(g) + 4K for all ¢ € G. The size vector §is (¢ + 2,q + 4). This reduction can
be done in polynomial time. We claim that there exists an EF1 allocation with size vector
§ in this instance if and only if Y can be partitioned into two multisets Y; and Y5 of equal
cardinalities (i.e., of size ¢ + 1 each) with sums (¢ + 3)K and (g + 1)K respectively.

(<) Let Jj and Jj be a partition of {1,...,2¢ + 2} of equal cardinalities such that
Djer¥i = (@+3)K and 355 pry; = (¢ + K. Let A1 = {g;}jes; U{g245} and Ay =
G \ A; be the two agents’ bundles respectively. From agent 1’s perspective, agent 1’s bundle
has utility ((¢ + 3)K + 2K) 4 (¢ + 2)(4K) = (5q + 13)K, agent 2’s bundle has utility
((g+ 1)K 4+ 2K) + (¢ + 4)(4K) = (5¢ + 19)K, and a most valuable good in agent 2’s
bundle (e.g., g24+6) has utility 6K, so agent 1 is EF1 towards agent 2. From agent 2’s
perspective, agent 2’s bundle has utility (¢ + 1)K + 2K = (¢ + 3)K, agent 1’s bundle has
utility (¢ +3)K + 2K = (¢+5)K, and a most valuable good in agent 1’s bundle (e.g., gag+5)
has utility 2K, so agent 2 is EF1 towards agent 1. Accordingly, (A7, A2) is an EF1 allocation
with size vector (¢ + 2,q + 4).

(=) Let (A1, A2) be an EF1 allocation with size vector §. From agent 1’s perspective,
u1(G) = (10g + 32)K and a most valuable good (e.g., g24+5) has utility 6. For agent 1 to
be EF1 towards agent 2, we must have uj(A;) > ((10¢ + 32)K — 6K)/2 = (5q + 13)K and
uz(A1) = u1(A1) — (¢ + 2)(4K) > (¢ + 5)K. This means that u;(A2) = u1(G) — ui1(A;) <
(5¢+ 19)K and ua(A2) = u1(A2) — (¢ +4)(4K) < (¢+ 3)K. On the other hand, from agent
2’s perspective, uz(G) = (2¢ + 8)K and a most valuable good has utility 2K. For agent 2
to be EF1 towards agent 1, we must have ua(Az2) > ((2¢ + 8)K — 2K)/2 = (¢ + 3)K and
u1(Az) = ua(A2) + (¢ +4)(4K) > (5g + 19) K. This means that ug(A;) = uz(G) — uz(Asz) <
(¢+5)K and u1 (A1) = u2(A1)+ (¢ +2)(4K) < (5g+ 13) K. By combining these inequalities,
we conclude that these inequalities are tight, i.e., agent 1’s utilities for both agents’ bundles
are exactly (5¢+13)K and (5¢+ 19) K respectively so that the sum is (10g+32) K, and agent
2’s utilities for both agents’ bundles are ezactly (¢ + 5)K and (¢ + 3) K respectively so that
the sum is (2¢ + 8) K. Additionally, both agents must each have a most valuable good worth
6K and 2K to them respectively. Without loss of generality, we may assume that gog45 € Ay
and gog4+6 € Az (note that gag41 is also a most valuable good, but we use ga24+45 and gag+¢6 for
simplicity).

Since gog+6 € Ao, there are ¢ + 3 goods in A \ {g2¢+6} and uz(A2 \ {g2¢+6}) = (¢ +
3) K —2K = (¢ + 1)K. These goods are chosen from G; = {g1,...,02¢+1} and Gy =
{92¢+2, 92¢+3, g2g+4}. Recall from the construction that us(g) > K for all ¢ € Gy, and
uz(g) = 0 for all g € Gp. If Ay \ {g2¢+6} contains at least ¢ + 1 goods from G, then
u2(A2 \ {92¢+6}) > (¢ + 1)K, a contradiction. Therefore, As \ {g2¢+6} contains at most ¢
goods from G, and at least 3 goods from Gy. Since |Gy| = 3, we must have Gy C As. Note
that ua(Go) = 0, so ua((A2 \ {g2¢+6}) \ Go) = (¢ + 1) K. Therefore, the ¢ goods from G in
agent 2’s bundle have a total utility of (¢ + 1)K. These goods, together with ga,42, induce
the set Y3 with cardinality ¢+ 1 and sum (¢+1)K. Then, ¥; = Y\ Ys and Y3 give a required
partition of Y. O

For two agents with binary utilities, we shall show later that the decision problem is in P
(see Theorem 5.3.7).

49

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

5.3.2 Constant Number of Agents

Next, we discuss the complexity of the decision problem for a constant number of agents. In
this case, we devise a pseudopolynomial-time algorithm for deciding the existence of an EF1

allocation with a given size vector.

Lemma 5.3.4. Let an instance with n agents and a size vector be given, wheren is a constant.
Suppose that the utility of each good is an integer, and let R = max; u;(G). Then, there exists
an algorithm running in time polynomial in m and R that decides whether the instance admits

an EF1 allocation with the size vector.

Proof. The algorithm uses dynamic programming. We construct a table with m columns and
L rows, where L will be specified later. The index of each row is represented by a tuple con-
taining a; j, b; j, and ¢; for each i,j € N, i.e., (a1,1,01,2,.--,8nn,b1,1,012,. .., bpn,C1,...,Cpn).
The value of a; ; is the utility of agent j’s bundle from agent i’s perspective, i.e., a; j; = u;(A;);
the value of b; ; is the utility of a most valuable good in agent j’s bundle from agent i’s perspec-
tive, i.e., b;; = maxgea; ui(g) (note that this value is zero if A; = @); and the value of ¢; is
the number of goods in agent i’s bundle. Note that a; ;,b; ; € {0,..., R} and ¢; € {0,...,m},
so there are L = (R + 1)2"(m + 1) rows, which is polynomial in m and R. An entry
in column ¢ represents whether an allocation involving {g1,...,gq} is possible for the tuple
representing the row, and is either positive or negative.

Initialize every entry to negative. Consider the n possibilities of adding g1 to each of
the agents’ bundles respectively, and set the corresponding entries in the first column of the
table to positive. In particular, for each j € N, the row represented by the tuple such that
a;j = bij = u;(g1) and ¢; = 1 for all i € N, and zero for all other values in the tuple, has the
entry (in the first column) set to positive.

Now, for each ¢ € {2,...,m} in ascending order, for each positive entry in column ¢ — 1,
consider the n possibilities of adding g, into each of the n agents’ bundles respectively, and
set the corresponding entry for each of these possibilities in column ¢ to positive. Once
this procedure is done, consider all positive entries in column m. If some positive entry
corresponds to an EF1 allocation with the required size vector, then the instance admits such
an EF1 allocation; otherwise, no such allocation exists.

Since n is a constant, the number of entries in the table is polynomial in m and R. At each
column, there is a polynomial number of rows with positive entries, and hence the update
is polynomial. Finally, checking for a feasible EF1 allocation at the last column can also be

done in polynomial time. d

We now move to polynomial-time algorithms that determine the existence of an EF1
allocation with a given size vector. Recall that such an algorithm exists for two agents with
identical utilities (Theorem 5.3.2). However, it turns out that such an algorithm does not exist
for three or more agents with identical utilities, unless P = NP. In particular, we establish
the NP-hardness of the decision problem via a reduction from BALANCED MULTI-PARTITION
with p = 2, an NP-hard problem by Proposition 5.2.2.

Theorem 5.3.5. REFORMABILITY is weakly NP-complete for n > 3 agents with identical

utilities, where n is a constant.

50

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Proof. Clearly, this problem is in NP. The “weak” aspect is demonstrated in Lemma 5.3.4.
Therefore, it suffices to show that this problem is NP-hard.

To show NP-hardness, we shall reduce from the NP-hard problem BALANCED MULTI-
PARTITION with p = 2 (see Proposition 5.2.2). Let a BALANCED MULTI-PARTITION instance
with p = 2 be given. Define a fair division instance as follows. There are n > 3 agents with
identical utilities, and a set of goods G = {g1,..., 924, h1, ..., hn} such that u(g;) = x; for
je{1,...,2¢q} and u(hy) = (¢ + 1)K for k € {1,...,n}. The size vector § is such that
s1=s2=¢q+ 1 and s =1 for all k € {3,...,n}. This reduction can be done in polynomial
time. We claim that there exists an EF1 allocation with size vector § in this instance if and
only if X can be partitioned into multisets X1, X5 of equal cardinalities and sums.

(<) Let (X1, X9) be such a partition. Define an allocation such that agent k receives hy
for £ € N, agent 1 additionally receives the ¢ goods corresponding to the integers in X, and
agent 2 additionally receives the ¢ goods corresponding to the integers in X5. We show that
this allocation is EF1. The utilities of agent 1’s and agent 2’s bundles are 2(q + 1)K each,
and the utilities of the other agents’ bundles are (¢+ 1)K each, so agents 1 and 2 do not envy
anyone else. Therefore, it remains to check that agent k is EF1 towards agents 1 and 2 for
k € {3,...,n}. Upon the removal of the single good h; (resp. hg) from agent 1’s (resp. agent
2’s) bundle, the remaining bundle has utility (¢ + 1)K, so agent k is EF1 towards agent 1
(resp. agent 2). Therefore, the allocation is EF1, as desired.

(=) Let (A4i,...,A,) be an EF1 allocation with size vector (¢ + 1,¢ + 1,1,...,1). If
agent 1’s bundle has at least two goods from {h1,...,h,}, then her bundle without the most
valuable good has utility more than (¢4 1)K since her bundle also contains other goods with
positive utility. Agent 3, having a bundle of utility at most (¢+ 1)K, will not be EF1 towards
agent 1, contradicting the assumption that the allocation is EF1. Therefore, agent 1’s bundle
has at most one good from {hi, ..., h,}; likewise for agent 2’s bundle. This means that every
agent receives ezactly one good from {hy,...,hy,}. Having established this, agent 3’s bundle
has a utility of (¢ + 1)K, and agent 3 is EF1 towards agent 1. This means that agent 1’s
bundle without a most valuable good (say, some hj) must have utility at most (¢ + 1)K.
The same argument can be used to show the same statement for agent 2’s bundle. This
means that the goods {g1, ..., g2¢} must be divided between agents 1 and 2 with each agent
receiving a utility of ezactly (¢ + 1)K. Such a division of {g1, ..., g2,} induces a partition of

X into two multisets of equal cardinalities and sums, as desired.]

Since the decision problem is NP-hard even for identical utilities, it must also be NP-
hard for general utilities. We now consider another class of utilities: binary utilities. When
there are n agents, every good g belongs to one of 2" types of goods represented by the
vector (u1(g),...,un(g)). For the purpose of determining whether an EF1 allocation exists,
it suffices to consider different goods of the same type as indistinguishable. We say that two
allocations are in the same equivalence class if the number of goods of each type that each
agent has is the same in both allocations. If A is an EF1 allocation, then all allocations in
the same equivalence class as A are also EF1 and can be reformed from A. We shall proceed
with a result which enumerates all (essentially equivalent) EF1 allocations in time polynomial

in the number of goods, provided that the number of agents is a constant.

o1

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Lemma 5.3.6. Let an instance with n agents with binary utilities and a size vector be given,
where n is a constant. Then, there exists an algorithm running in time polynomial in m that

outputs all equivalent classes of EF'1 allocations with the size vector.

Proof. An agent’s bundle can be represented by a 2™-vector where each component of the
vector is the number of goods of that type in her bundle. Since the number of goods of each
type is an integer between 0 and m, there are m + 1 possible values for each component,
and hence at most (m + 1)2" possible vectors to represent each agent’s bundle. Allocations
in an equivalence class can be represented by an ordered collection of n such vectors—one
for each agent—and there are at most ((m -+ 1)2")" such collections. Since ((m + 1)2")" is
polynomial in m whenever n is a constant, there is at most a polynomial number of possible
equivalence classes of allocations in the instance. For each of these equivalence classes of
allocations, we can check whether an allocation in the equivalence class is EF1 and has the
required size vector in polynomial time, and output the equivalence class if so. Therefore,

the overall running time is polynomial in m, as claimed. O
Lemma 5.3.6 implies that the decision problem can be solved efficiently for binary utilities.

Theorem 5.3.7. REFORMABILITY s in P for a constant number of agents with binary

utilities.

Proof. Use the algorithm as described in Lemma 5.3.6 to enumerate all equivalence classes
with an EF1 allocation with the size vector, and output “yes” if and only if such an equivalence
class is found. Note that if some allocation in an equivalence class is EF1, then all allocations

in the same equivalence class are also EF'1.]

5.3.3 General Number of Agents

For any constant number of agents, the problem of determining the existence of an EF1
allocation with a given size vector is weakly NP-hard by Theorem 5.3.5 (even for identical
utilities). For a general number of agents, the pseudopolynomial-time algorithm as described
in Lemma 5.3.4 does not work, since that algorithm is at least exponential in the number
of agents. Therefore, the decision problem for a general number of agents might not be
weakly NP-hard. We show that the problem is indeed strongly NP-hard by a reduction from
3-PARTITION, a strongly NP-hard problem (Garey and Johnson, 1979, p. 224).

Theorem 5.3.8. REFORMABILITY is strongly NP-complete for identical utilities.

Proof. Clearly, this problem is in NP. Therefore, it suffices to show that it is strongly NP-hard.

To this end, we shall reduce from 3-PARTITION. In 3-PARTITION, we are given positive
integers ¢ and K, and a multiset X = {z1,...,23,} of positive integers of total sum ¢K.
The problem is to decide whether X can be partitioned into multisets X7, ..., X, of equal
cardinalities and sums, i.e., for each i € {1,...,q}, |X;| = 3 and the sum of all the integers
in X; is exactly K. This decision problem is known to be strongly NP-hard, even if K/4 <
xj < K/2 for every j € {1,...,3q} (Garey and Johnson, 1979, p. 224).

52

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Let an instance of 3-PARTITION be given. Define a fair division instance as follows. There

are n = ¢ + 1 agents with identical utilities, and a set of goods G = {g1,...,g3q+6} such
that u(g;) = z; for j € {1,...,3¢} and u(gy) = K/5 for k € {3¢+1,...,3¢ + 6}. The
size vector § is such that s; = 3 for all j € {1,...,¢} and s, = 6. This reduction can be

done in polynomial time. We claim that there exists an EF1 allocation with size vector 5 in
this instance if and only if there exists a partition of X into multisets Xi,..., X, of equal
cardinalities and sums.

(<) Let such a partition be given. Define an allocation such that each of the first ¢
agents receives the three goods corresponding to each multiset, and agent ¢ + 1 receives
{93¢+1,-- -, 93g+6}. Note that agents 1 to ¢ have bundles worth K each, and agent ¢ + 1 has
a bundle worth 6K /5. Since each of the goods from agent (¢ + 1)’s bundle is worth exactly
K/5, every agent is EF1 towards agent ¢ + 1. Accordingly, the allocation is EF1.

(=) Let an EF1 allocation with size vector § be given. Note that every good is worth at
least K /5, so agent (¢ + 1)’s bundle without a most valuable good is worth at least K. If
agent g+ 1 receives a bundle worth more than 6/K/5, then some agent receives a bundle worth
less than K, and will not be EF1 towards agent ¢ + 1. Therefore, agent ¢ + 1 must receive
a bundle worth at most 6K /5. The only way this is possible is when agent ¢ + 1 receives
{93g+1, - - -, 93¢+6}. Now, since agents 1 to g are EF1 towards agent ¢ + 1, these agents must
each receive a bundle worth at least K. The only way this is possible is when each of them

receives a bundle worth exactly K. This induces the desired partition. O

For binary utilities, the decision problem for a constant number of agents is in P (The-
orem 5.3.7). The crucial reason is that in this case, the number of different types of goods
is also a constant, which allows us to enumerate all the (essentially equivalent) EF1 allo-
cations in polynomial time (Lemma 5.3.6). This is no longer possible when the number of
agents is non-constant. In fact, we show that the decision problem is strongly NP-hard for
a general number of agents with binary utilities. To this end, we reduce from GRAPH k-
COLORABILITY, which is strongly NP-hard for any fixed £ > 3 (Garey and Johnson, 1979,
p. 191).

Theorem 5.3.9. REFORMABILITY is strongly NP-complete for binary utilities.

Proof. Clearly, this problem is in NP. Therefore, it suffices to show that it is strongly NP-hard.

To this end, we shall reduce from GRAPH k-COLORABILITY with £ > 3. In GRAPH k-
COLORABILITY, we are given a graph G= (V,E) and a positive integer k, and the problem
is to decide whether G is k-colorable, i.e., whether each of the vertices in V' can be assigned
one of k colors in such a way that no two adjacent vertices are assigned the same color. This
decision problem is known to be strongly NP-hard for any fixed & > 3 (Garey and Johnson,
1979, p. 191).

Let an instance of GRAPH k-COLORABILITY be given with a fixed k& > 3, where V =
{v1,...,vp} and E = {ey,...,e4}. Define a fair division instance as follows. There are
n = q + k agents where the first ¢ agents are called edge agents and the last k agents are
called color agents. There are m = kp goods. Each color agent assigns zero utility to every

good. Forr € {1,...,q}, if e, = {v;,v;}, then the r'!" edge agent assigns a utility of 1 to each

93

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

of g; and gj, and zero utility to every other good. Note that only the first p goods correspond
to vertices and are valuable to the edge agents whose corresponding edges are incident to the
vertices; the remaining (k — 1)p goods are not valuable to any agent. The size vector § is
such that s, = 0 for each edge agent r and s, = p for each color agent c. This reduction can
be done in polynomial time. We claim that there exists an EF1 allocation with size vector §
in this instance if and only if G is k-colorable.

(<) Let a proper k-coloring of G be given. For ¢t € {1,...,p}, if vertex v; is assigned the
color ¢, then allocate g; to the color agent c. Since there are p such goods and each color
agent is supposed to have p goods in her bundle, it is possible to allocate all of these goods.
Subsequently, allocate the remaining goods arbitrarily among the color agents until every
color agent has exactly p goods. We claim that this allocation is EF1. Every color agent
assigns zero utility to every good and is thus EF1 towards every other agent. Each edge agent
assigns a utility of 1 to only two goods, so we only need to check that these two goods are in
different bundles. Indeed, these two goods correspond to vertices which are adjacent to each
other in é, and proper coloring of G implies that the vertices are of different colors, so the
corresponding goods are in different color agents’ bundles. Therefore, the allocation is EF1.

(=) Let an EF1 allocation with size vector § be given. For t € {1,...,p}, if the good g¢;
is with color agent ¢, assign vy to color ¢. We claim that this coloring is a proper k-coloring
of G. Since there are k color agents, at most k colors are used. Therefore, it suffices to check
that adjacent vertices are assigned different colors. Let v;,v; € V' be adjacent vertices. Then,
there exists an edge e, = {v;,v;}. The edge agent 7 assigns a utility of 1 to each of g; and
gj. Since agent r’s bundle is empty, g; and g; must be in different (color agents’) bundles
in order for agent r to be EF1 towards every other agent. This implies that v; and v; are

assigned different colors. O

Even though the decision problem is strongly NP-hard for identical or binary utilities, we
prove next that it can be solved in polynomial time for identical and binary utilities. Indeed,
this can be done by checking whether the total number of valuable goods is within a certain

threshold that can be computed in polynomial time.
Theorem 5.3.10. REFORMABILITY is in P for identical binary utilities.

Proof. Let § be the given size vector. Let sg = min;en s; be the size of the smallest bundle,
and ng = |{i € N | s; = so}| be the number of agents with exactly sg goods in their bundles.
We claim that an EF1 allocation with size vector § exists if and only if the number of valuable
goods is at most sgn + n — ng. Note that checking whether the number of valuable goods is
at most sgn + n — ng can be done in polynomial time.

If an EF1 allocation with size vector § exists, then an agent with bundle size sy receives
at most sg valuable goods. For this agent to be EF1 towards every other agent, every other
agent can only receive at most so + 1 valuable goods. Since there are n — ng agents with
bundle sizes at least so + 1 and ng agents with bundle sizes exactly sg, the total number of
valuable goods is at most (n — ng)(so + 1) + npso = son + n — ng.

Conversely, if the number of valuable goods is at most sgn +n — ng, then we can allocate

the valuable goods in a round-robin fashion up to the bundle size of each agent, followed

54

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

by the non-valuable goods. Note that every agent’s bundle size is at least sg. If there are
at most sgn valuable goods, then these valuable goods can be distributed fairly with the
difference in the number of valuable goods between agents being at most one, and hence the
allocation is EF1. Otherwise, the first sogn valuable goods can be distributed so that every
agent receives sg of them. Since there are n — ng agents with bundle size at least sg + 1 and
at most n — ng valuable goods left, the remaining valuable goods can be arbitrarily allocated
to these agents so that each of these agents receives at most one more valuable good. Then,

each agent receives sg or so + 1 valuable goods, and so the allocation is EF1. O

5.4 Optimal Number of Exchanges

In this section, we consider the complexity of computing the optimal number of exchanges
required to reach an EF1 allocation from an initial allocation.

Recall that the decision problem in Section 5.3 is to determine whether there exists an
EF1 allocation that can be reached from a given initial allocation. This is equivalent to
determining whether the optimal number of exchanges to reach an EF1 allocation is finite or
not. We have established a few scenarios where there exist polynomial-time algorithms for
this task: (a) two agents with identical utilities (Theorem 5.3.2), (b) any constant number
of agents with binary utilities (Theorem 5.3.7), and (c) any number of agents with identical
binary utilities (Theorem 5.3.10). For these scenarios, we can run the respective polynomial-
time algorithms to decide whether such an EF1 allocation exists—if none exists, then the
optimal number of exchanges is co. Therefore, for the proofs in this section pertaining to
these scenarios, we proceed with the assumption that such an EF1 allocation exists. We will
show that the problem of computing the optimal number of exchanges for these scenarios is
also in P.4

For the remaining scenarios where the decision problem in Section 5.3 is NP-hard, it is
NP-hard to even decide whether the optimal number of exchanges to reach an EF1 allocation
is finite or not. Therefore, for these scenarios, we shall focus on the special case where the
given size vector is balanced, so that the optimal number of exchanges is guaranteed to be
finite (see Proposition 5.2.1). Even with this assumption, we will show that the computational
problem for these scenarios remains NP-hard.

For convenience, we refer to as OPTIMAL EXCHANGES the problem of computing the
optimal number of exchanges required to reach an EF1 allocation given an instance and an

initial allocation in the instance. The results in this section are summarized in Table 5.2.

5.4.1 Two Agents

We begin with the case of two agents. For two agents with identical utilities, we show that
there exists a polynomial-time algorithm that computes the optimal number of exchanges.
This algorithm performs the exchanges until an EF1 allocation is reached, while keeping track
of the number of exchanges required. The algorithm is “greedy” in the sense that at each

step, it performs an exchange involving the most valuable good from the agent whose bundle

4Our algorithms can be modified to compute an optimal sequence of exchanges as well.

95

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

has the higher utility, and the least valuable good from the other agent. We demonstrate
that this choice is the best in terms of the number of exchanges required to reach an EF1

allocation.
Theorem 5.4.1. OPTIMAL EXCHANGES is in P for two agents with identical utilities.

Proof. We assume that an EF1 allocation with the given size vector exists. If the initial
allocation A is EF1, we are done. Otherwise, assume without loss of generality that agent 2
has a higher utility than agent 1 in A. Let § = (s1,s2) be the size vector. By rearranging
the labels of the goods, assume that the goods are in non-increasing order of utility, i.e.,
u(g1) > u(g2) > -+ > u(gm). The algorithm proceeds as follows: repeatedly exchange the
most valuable good in agent 2’s bundle with the least valuable good in agent 1’s bundle
until agent 1 is EF1 towards agent 2. The optimal number of exchanges required is then the
number of exchanges made in this algorithm.

First, we claim that in each exchange, a good from {gi,...,gs, } in agent 2’s bundle is
always exchanged with a good from {gs,+1,...,9m} in agent 1’s bundle. Suppose on the
contrary that this is not true. Let A’ be the allocation just before we make the exchange
that violates this claim. The only way for the claim to be violated is when A} = {¢1,...,9s, }
and Ay = {gs;+1,---,9m}. If s1 < s9, then by Lemma 5.3.1, there does not exist an EF1
allocation with size vector §—this would contradict our assumption that an EF1 allocation
with size vector § exists. Otherwise, s; > s2, and every good in A} has a higher utility than
every good in Af, so agent 1 is EF1 towards agent 2. This would contradict our assumption
that the algorithm has not terminated. Hence, the claim is true.

By the claim in the previous paragraph, the total number of exchanges made is at most
min{sy, so} < m. Each exchange can be performed in polynomial time, and so the algorithm
terminates in polynomial time. We show next that an EF1 allocation is obtained when the
algorithm terminates. It suffices to show that agent 2 is EF1 towards agent 1 in the final
allocation. To this end, we show that agent 2 is EF1 towards agent 1 at every step of the
algorithm. Let the initial allocation be A° = A, and let A’ be the allocation after ¢ steps of
the algorithm. Note that A satisfies the condition that agent 2 is EF1 towards agent 1, since
agent 2 has a higher utility than agent 1 in A. We show that if A’ has the property that agent
2 is EF1 towards agent 1 and agent 1 is not EF1 towards agent 2, then A**! has the property
that agent 2 is EF1 towards agent 1. Suppose that g € A} is exchanged with h € A}; note
that ¢ is a good with the highest utility in A%. This means that u(A%) < u(A4\ {g}). Then,

u(Ay™) > u(Ay\ {h})

= u(45\ {g})
>u
> u(Af\ {h})

(
(A
(A7)
(
= u(A7\ {g}),

showing that agent 2 is EF1 towards agent 1 in AL

Finally, we show that the optimal number of exchanges required to reach an EF1 allocation

56

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

is at least the number of exchanges made in this algorithm. Let 7' be the number of exchanges
made in this algorithm. For each t € {1,...,T}, let g* € As (resp. h* € A1) be the good in
agent 2’s bundle (resp. agent 1’s bundle) that is exchanged at the t'"' step of the algorithm.
Note that we have u(g') > --- > u(g”) > w(h”) > --- > u(h'). We have u(AT™1) <
u(AT71\ {¢g7}), where g7 is a good with the highest utility in agent 2’s bundle in A7~
Suppose on the contrary that only £ < T — 1 exchanges are required to reach an EF1
allocation. Since A is not EF1, we have 1 < k < T. Let (Bj, B2) be the EF1 allocation after
the k exchanges. The utility of Bj is upper-bounded by the utility of Ay after adding k goods

of the highest utility from Ao and removing k£ goods of the lowest utility from A, so we have
u(By) < u((A; U {gl, DV ARY B

A1 +Z —’U,ht)

u(Ay) —I-Z —uht)

= u((A; U{g ,...,gT—1}>\{h%..',hT‘ID
= u(AT).

On the other hand, the utility of By without the most valuable good is lower-bounded by
the utility of As after adding k goods of the lowest utility from A; and removing £ +1 < T
goods of the highest utility from As, so we have

u(B2\ {g}) > u((A2 U {h!,... . A" P\ {g',... . g"1})

= u(A2) —u(g') = Y _(u(g"") —u(h"))

&
IIMw
I,

~
L

u(A2) —u(g') = Y (ulg™") — u(h'))

ﬁ.
,_.

= u((Aa U {h!,.. hT "\ {g"- 0"}
=u(A3 "\ {g"})

for every g € By. This gives the inequality u(B;) < u(AT™1) < u(AT7\ {¢7}) < uw(B2\{g})
for all g € By. Hence, agent 1 is not EF1 towards agent 2 in (Bj, By), contradicting the
assumption that (Bq, Bg) is EF1. It follows that at least T" exchanges are required to reach
an EF1 allocation. O

However, if the utilities are not identical, then computing the optimal number of exchanges
is NP-hard, even for balanced allocations. We show this by modifying the construction from
the NP-hardness proof of Theorem 5.3.3 in determining the existence of an EF1 allocation

with a given size vector.

Theorem 5.4.2. OPTIMAL EXCHANGES is NP-hard for two agents, even when the initial

allocation is balanced.

o7

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Proof. We modify the construction from the proof of Theorem 5.3.3. Recall that we have
Y ={y1,...,y2g42} with K < y; < 2K for j € {1,...,2¢}, Y241 = 2K, and 92442 = 0. A
fair division instance Z' is defined with n = 2 agents and a set of goods G’ = {g1, ..., g2g+6}-
Agent 2’s utility is such that ua(g;) = y; for j € {1,...,2¢ + 2}, ua(g2g+3) = u2(g24+4) = 0,
and ua(g2g+s5) = u2(g24+6) = 2K. Agent 1’s utility is such that ui(g) = ua(g) + 4K for all
g € G. The size vector §' is (¢ + 2,q + 4). In Theorem 5.3.3, it was proven that there exists
an EF1 allocation with size vector 57 in this instance if and only if Y can be partitioned into
two multisets Y7 and Ys of equal cardinalities (i.e., of size ¢ + 1 each) with sums (¢ + 3)K
and (q + 1)K respectively. Both problems were proven to be NP-hard.

Define a new fair division instance Z as follows. There are n = 2 agents and a set of goods
G ={9g1,..., 949412} For j € {1,...,2q+ 6}, the utility of g; for each agent is identical to
that in the original fair division instance Z'. For j € {2¢+7,...,4¢+ 12}, we have u;(g;) =0
for i € {1,2}. The size vector §is (2q + 6,2¢ + 6). In the initial allocation A, agent 1 has
A1 ={g92g+7,- - -, 9ag+12} and agent 2 has Ay = {g1,...,92¢+6}. This reduction can be done
in polynomial time. We claim that the optimal number of exchanges required to reach an
EF1 allocation from A is at most ¢+ 2 in Z if and only if there exists an EF1 allocation with
size vector 5/ in Z'.

(<) Let (A], A)) be an EF1 allocation with size vector s’ in Z’. Note that A} C Ay and
|A]| = ¢+ 2. In A, exchange the ¢ + 2 goods from A} with any ¢ + 2 goods in A;. This
requires a total of ¢ + 2 exchanges. The new allocation has exactly the same goods as that
in (A4}, A)) along with other goods with zero utility, and so is EF1. Therefore, the optimal
number of exchanges to reach an EF1 allocation from A is at most g + 2.

(=) Suppose that an EF1 allocation B is reached from A after t < g 4+ 2 exchanges in Z.
We may assume that every good is not exchanged more than once. By the same reasoning as
in the proof of Theorem 5.3.3, we must have u;(By) > (5¢ + 13)K and u2(B1) < (¢ + 5)K.
Since t goods are transferred from Ay, we have ui(B1) = ua(B1) + t(4K) < (¢ + 5)K +
(¢ +2)(4K) = (5q + 13)K. This means that the inequalities for u;(B;) are tight, and we
have ui(B1) = 5g+ 13 and t = ¢ + 2. Letting G; = Az N By, we have |G1| = ¢ + 2 and
G1 C Ay, C G'. Since (By, Bg) is an EF1 allocation, the allocation that removes all goods
with zero utility is also EF1, namely, (G1,G"\ G1). This induces an EF1 allocation with size

vector 5/ in Z'. O

5.4.2 Constant Number of Agents

While a polynomial-time algorithm to compute the optimal number of exchanges exists for
two agents with identical utilities, this is not the case for three or more agents unless P = NP.
Indeed, we establish the NP-hardness of this problem via a reduction from BALANCED MULTI-
PARTITION with p > 2, an NP-hard problem by Proposition 5.2.2.

Theorem 5.4.3. OPTIMAL EXCHANGES is NP-hard for n > 3 agents with identical utilities,

even when the initial allocation is balanced.

Proof. We shall reduce from the NP-hard problem BALANCED MULTI-PARTITION (see Propo-
sition 5.2.2). Let a BALANCED MULTI-PARTITION instance be given with p > 2. Define a

o8

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

fair division instance as follows. There are n = p 4+ 1 agents with identical utilities, and a
set of goods G = {g1, - -, In(pg+q+2)} such that u(g;) = x; for all j € {1,...,pq}, u(g;) = K
for all j € {pg+1,...,pq + q+ 2}, and u(g) = 0 for the remaining goods g. Note that
every good in G1 = {g1,...,0gpg} has utility more than K and at most 2K, every good in
G2 = {9gpg+1,- - -» Ipg+q+2} has utility exactly K, and every good in G \ (G1 U G2) has zero
utility. The size vector §'is such that s; = pg+¢+2 for all ¢ € N. In the initial allocation A,
agent n has G1 U G9, while the remaining agents have the remaining goods. This reduction
can be done in polynomial time. We claim that the optimal number of exchanges required
to reach an EF1 allocation from A is at most pq if and only if X can be partitioned into
multisets X1,..., X, of equal cardinalities and sums.

(<) Let (X1,...,X,) be such a partition. For each j € {1,...,pq}, if z; is in X; for some
i€ {l,...,p}, exchange g; in agent n’s bundle with a zero-utility good in agent i’s bundle.
After pq exchanges, each agent i € {1,...,p} has ¢ goods corresponding to the integers in
X; along with other goods with zero utility, and the total utility of these goods is (¢ + 1)K.
Meanwhile, agent n has G2 along with other goods with zero utility. There are ¢ + 2 goods
with utility K each, and so the utility of agent n’s bundle without a most valuable good is
(¢+ 1)K. This shows that the resulting allocation is EF1. Therefore, the optimal number of
exchanges required to reach an EF1 allocation from A is at most pq.

(=) Suppose that the optimal number of exchanges required to reach an EF1 allocation
from A is at most pg. Let B be one such EF1 allocation after these exchanges. Since at most
pq exchanges were made, agent n has at least |G; U Ga| — pg = ¢ + 2 goods from G U Gy
in B. Every good in GG1 U GG has utility at least K, so the utility of agent n’s bundle in B
without a most valuable good is at least (¢ + 1) K. For every agent to be EF1 towards agent
n, they must each have a utility of at least (¢+ 1)K in B. The total utility of agent 1 to agent
p’s bundles is therefore at least p(¢ + 1)K, which is exactly the utility of G;. Since every
good in Gy has a higher utility than every good in Go, this implies that the only possibility
is that all the goods in G go to agents 1 to p, leaving G (along with other goods with zero
utility) with agent n. This means that agent n’s bundle in B without a most valuable good
has utility ezactly (¢ + 1)K, and that the goods in G; must be split among agents 1 to p so
that every agent receives a utility of (¢ + 1)K from G;. Furthermore, none of these agents
can receive more than ¢ goods from G1; otherwise, if some agent receives at least ¢+ 1 goods
from G1, then the utility of her bundle is more than (¢ + 1)K, which leaves another agent
with utility less than (¢ + 1)K, a contradiction. Therefore, agent 1 to p each receives exactly
q goods from G7. Hence, it is possible to partition the goods in (7 into p bundles so that
each bundle has exactly ¢ goods and the utility of each bundle is exactly (¢ + 1)K. This

induces a partition of X into p multisets of equal cardinalities and sums. O

Next, we consider binary utilities. We have shown that deciding whether the optimal
number of exchanges to reach an EF1 allocation is finite is in P (Theorem 5.3.7). We now
show that the same is true for computing this exact number. To this end, we first prove that
finding the optimal number of exchanges between two equivalence classes of allocations can

be done efficiently.

99

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

Lemma 5.4.4. Let an instance with n agents with binary utilities be given, where n is a
constant. Then, there exists an algorithm running in time polynomial in m that computes the
optimal number of exchanges required to reach some allocation in a given equivalence class

from another given allocation.

Proof. If the size vectors of the given allocation and an allocation in the given equivalence
class are different, then the optimal number of exchanges is co. Therefore, we may henceforth
assume that the size vectors are the same.

For each agent ¢ and each type of good c in the given initial allocation, we have an n-vector
such that the j* component of this vector represents the number of goods of type ¢ that need
to be moved from agent ¢ in the initial allocation to agent j in some final allocation in the
given equivalence class under some exchange. Since the number of goods of each type is an
integer between 0 and m, there are m+ 1 possible numbers for each component, and hence at
most (m + 1)™ possible vectors to represent this information. The movement of goods from
the initial allocation to the final allocation can be represented by an ordered collection of such
vectors over all agents and over all types of goods in each agent’s initial allocation. Since there

72" such collections. Since

are n agents and 2" types of goods, there are at most ((m + 1))
((m + 1)™)™2" is polynomial in m whenever n is a constant, there are at most a polynomial
number of such movements between the two allocations. For each of these movements, we
can verify in polynomial time whether it indeed gives some final allocation in the equivalence
class. We thus have an enumeration of all such feasible movements in polynomial time.

For each feasible movement between the initial allocation A and the final allocation B,
define a directed graph where the vertices are the agents and each edge e, represents a good
such that if g € A; N By, then e, = (4,7). Proposition 4.4.1 showed that the number of
exchanges required to reach B from A is m — ¢*, where ¢* is the maximum number of disjoint
cycles in the item exchange graph. Note that each cycle consists of a subset of the agents in
some order, so the number of cycle types, L, is at most (n + 1)!, which is a constant. We
have a L-vector such that the k™" component of this vector represents the number of cycles in
the item exchange graph of cycle type k. Since the number of cycles of each cycle type is an
integer between 0 and m, there are m + 1 possible numbers for each component, and hence
at most (m + 1)¥ possible vectors to represent the cycles in the graph, which is polynomial
in m. We can enumerate all such vectors, consider only those vectors that represent the item
exchange graph, and output the maximum number of disjoint cycles from these vectors as
c* in polynomial time. Then, calculating m — ¢* gives the optimal number of exchanges for
that feasible movement of goods. Finally, the minimum optimal number of exchanges across

all feasible movements is the quantity we desire. O

This lemma, together with Lemma 5.3.6, yields the result.

Theorem 5.4.5. OPTIMAL EXCHANGES is in P for a constant number of agents with binary

utilities.

Proof. We use the algorithm in Lemma 5.3.6 to enumerate all the possible equivalence classes
of EF1 allocations with the given size vector in polynomial time. For each equivalence class

of allocations, we use the algorithm in Lemma 5.4.4 to compute the optimal number of

60

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

exchanges required to reach some allocation from this equivalence class from the given initial

allocation in polynomial time. We then return the smallest such number. O

5.4.3 General Number of Agents

Let us now consider a non-constant number of agents. We have shown that computing
the optimal number of exchanges required to reach an EF1 allocation is NP-hard, even for
identical utilities (Theorem 5.4.3). We thus consider binary utilities.

Although this problem is in P when the number of agents is a constant (Theorem 5.4.5),
we show that it is NP-hard for a general number of agents, even when we consider the special
case where the initial allocation is balanced. For this, we reduce from ExacT COVER BY
3-SETs (X3C), an NP-hard problem (Garey and Johnson, 1979, p. 221).

Theorem 5.4.6. OPTIMAL EXCHANGES is NP-hard for binary utilities, even when the initial

allocation is balanced.

Proof. We shall reduce from X3C. In X3C, we are given positive integers p and ¢, a set
X ={x1,...,234}, and a collection C' = {Y7,...,Y,} of three-element subsets of X, i.e., for
each j € {1,...,p}, |Yj| =3 and Y; C X. The problem is to decide whether there exists an
exact cover for X in C, i.e., whether there exists D C C such that |D| = ¢q and for all z € X,
there exists Y € D such that x € Y. This decision problem is known to be NP-hard (Garey
and Johnson, 1979, p. 221).

Let an X3C instance be given. Note that if there exists an exact cover D for X, and
if some 2/ € X appears in exactly one Y/ € C, then Y’ must be in D, and moreover, the
other two elements in Y’ \ {2’} must not appear in any other three-element sets in D. In
this case, we can reduce the problem further by considering the set X \ Y’ and the collection
{Y; € C | Y;NY' = &} instead. Therefore, assume without loss of generality that each z € X
appears in at least two three-element sets in C.

Define a fair division instance as follows. There are n = 3¢+ 1 agents with binary utilities,
and a set of goods G = {g;; | i € {1,...,3¢+1},j € {1,...,p}}. For notational simplicity,
let hj = g3q+1,5 for all j € {1,...,p}; the good h; is associated with Y;. The size vector is § =
(p,...,p). In the initial allocation A = (Ay,..., Agqt1), we have A; = {g;; | j € {1,...,p}}
for all i € N. Agent 3¢+ 1 is a special agent and assigns zero utility to every good. For each
non-special agent ¢ € {1,...,3q}, let n; be the number of three-element subsets in C' that
contain z;, i.e., n; = {Y € C | z; € Y}|. By assumption, we have n; > 2. Then, agent 7
values exactly n; — 2 goods in A;, e.g., ui(g; ;) =1 for j € {1,...,n; — 2} and u;(g; ;) =0
for j € {n; —1,...,p}. Agent ¢ also values the goods associated with any Y; that contains
xj, i.e., ui(hj) = 1 if and only if x; € Y;. Agent i assigns zero utility to every other good not
mentioned. Note that in the initial allocation, from each non-special agent i’s perspective,
the utility of agent i’s bundle is n; — 2, the utility of agent (3¢ + 1)’s bundle is n;, and the
utilities of the other agents’ bundles are zero. This reduction can be done in polynomial time.
We claim that the optimal number of exchanges required to reach an EF1 allocation from .4
is at most ¢ if and only if there exists an exact cover for X in C.

(<) Let D be an exact cover for X. For each Y; € D, we perform one exchange as

61

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

follows: select any x; € Yj arbitrarily, and exchange g;, in agent i’s bundle with h; in agent
(3¢ + 1)’s bundle. Note that there are exactly ¢ exchanges, since |D| = q. We claim that the
final allocation is EF1. Since agent 3¢+ 1 does not value any good, she is EF1 towards every
other agent. Therefore, we only need to consider agent i’s envy for i € {1,...,3q}. Note that
there exists j € {1,...,p} such that x; € Y; and Y; € D. This means that h; is moved to
some non-special agent’s bundle in an exchange (possibly agent i). Regardless of whom h;
goes to, agent i’s utility for her own bundle is at least n; — 2, and agent i’s utility for agent
(3¢ + 1)’s bundle is exactly n; — 1, so agent i is EF1 towards agent 3¢ + 1. Furthermore, if
h; goes to some agent i’ # 7, then agent ¢’s utility for the bundle of agent ¢’ is 1, so agent i
is EF1 towards agent 7’. Every other non-special agent’s bundle yields zero utility to agent 7.
This shows that agent ¢ is EF1 towards every other agent. Accordingly, the final allocation
is EF1.

(=) Suppose that after at most ¢ exchanges, an EF1 allocation is reached. Let i €
{1,...,3q}. The valuable goods from agent i’s perspective are with agent ¢ or with agent
3q + 1. Since agent i’s utility for her own bundle in A is n; — 2 and her utility for agent
(3¢ + 1)’s bundle is n;, some valuable good from agent (3¢ + 1)’s bundle needs to be moved
to another agent’s bundle (possibly i’s) in an exchange. Now, each good in agent (3¢ + 1)’s
bundle is valuable to exactly three agents. Since the movement of each good in agent (3g+1)’s
bundle can only resolve the envy for at most three agents, at least g goods need to be moved
to make agents 1 to 3¢ EF1. This means that exactly g exchanges are made; moreover, each
good h; moved from agent (3¢ + 1)’s bundle is associated with three distinct agents. The
set of ¢ goods moved from agent (3¢ + 1)’s bundle induces an exact cover D with cardinality
q.]

Finally, we consider identical binary utilities. We show that for this restricted class of
utilities, the computational problem can be solved efficiently regardless of whether the size

vector of the initial allocation is balanced or not.
Theorem 5.4.7. OPTIMAL EXCHANGES is in P for identical binary utilities.

Proof. Let A = (Ai1,...,A,) be the given allocation. As mentioned at the beginning of
Section 5.4, we assume that an EF1 allocation can be reached from A. By the proof of
Theorem 5.3.10, there must be at most son +n — ny valuable goods, where sy = min;en |A;]
and ng = [{i € N | |4;| = so}|. Suppose that there are m; < son + n — ng valuable goods.
An EF1 allocation requires every agent to receive at least F' := [m;/n| valuable goods and
at most F' + 1 valuable goods. Since an EF1 allocation with the same size vector as A exists,
every agent must have at least F' goods in A, i.e., s > F. Let Ny be the set of agents who
have at most F' valuable goods in the initial allocation, and N; be the set of agents who
have at least F' 4 1 valuable goods in the initial allocation. Note that N = Ny U N;. Let
co = D ien, F'—u(A;)) and ¢ = 37y, (u(A;) — (F+1)). We claim that the optimal number
of exchanges required to reach an EF1 allocation is max{cop, c1}. Note that this value can be
computed in polynomial time, so it suffices to prove the claim.

First, we show that the optimal number of exchanges required to reach an EF1 allocation

is at least max{co,c1}. Each agent ¢ € Ny needs to receive at least F' — u(A4;) > 0 valuable

62

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

goods in order to arrive at a bundle with utility at least F'. In receiving these valuable goods,
agent ¢ must give away the same number of non-valuable goods from her bundle in A;—mnote
that this is possible since every agent has at least F' goods. Therefore, there exist at least
F — u(A;) valuable goods from other agents’ bundles that should go to agent i’s bundle and
at least F' — u(A;) non-valuable goods from agent i’s bundle that should go to other agents’
bundles. Summing up over all i € Ny, we have that at least > ;. 2(F —u(A4;)) = 2cp goods
are in the wrong hands. Since each exchange places at most two goods in correct hands,
the number of exchanges required is at least 2¢y/2 = ¢p. By an analogous argument on the
agents in N1, we have that the number of exchanges required is at least ¢;. This proves that
the optimal number of exchanges required to reach an EF1 allocation is at least max{cg, ¢1 }.

Next, we describe an algorithm that allows us to reach an EF1 allocation with at most
max{cp, c1} exchanges. The algorithm is as follows: repeatedly exchange a valuable good
from an agent with the highest utility with a non-valuable good from an agent with the
lowest utility, until every agent has at least F' valuable goods and at most F' + 1 valuable
goods. We show that this ending will always be reached. Suppose on the contrary that this
is not the case, and consider the final allocation just before the algorithm cannot proceed
further. Since every agent has at least F' goods in A, it must be possible that every agent
receives at least F' valuable goods in the final allocation, and so F' = sg. This means that
some agent has more than F'+ 1 valuable goods in the final allocation, and every agent who
has F' goods in A has F valuable goods in the final allocation. Then, the number of valuable
goods is my > Fng + (F + 1)(n — ng) = son + n — ng, which is a contradiction. This shows
that it is possible to reach the desired ending.

Now, we are ready to show that the optimal number of exchanges required is at most
max{cp,c1}. If cg > ¢1, then the first ¢; exchanges involve exchanging valuable goods from
agents in Ny with non-valuable goods from agents in Ny. At this point, every agent in Ny
has exactly F'+ 1 valuable goods, and every agent in Ny has at most F' valuable goods. Call
this allocation (B4,..., By). We have that » ;. n (F —u(B;)) = co —c1. If [N1| < o — ey,
then after | N7| further exchanges, we have that every agent has at most F' valuable goods and
some agent has fewer than F' valuable goods, contradicting the assumption that F' = |[m1/n].
Therefore, we must have |Ni| > ¢g — ¢;. Now, after ¢y — ¢1 further exchanges, every agent
in Ny has exactly F' valuable goods each and every agent in N7 has between F' and F + 1
valuable goods (inclusive), giving an EF1 allocation. Hence, if ¢y > ¢1, then the optimal
number of exchanges required to reach an EF1 allocation is at most ¢; + (cop — ¢1) = ¢p. By
an analogous argument, if ¢y < ¢1, then the optimal number of exchanges required to reach
an EF1 allocation is at most ¢;. It follows that the optimal number of exchanges required to

reach an EF1 allocation is at most max{cy, ¢ }. O

5.5 Worst-Case Bounds

In this section, instead of instance-specific optimization, we turn our attention to the worst-
case number of exchanges required to reach an EF1 allocation from some initial allocation.

Since an EF1 allocation may not always be reachable (as can be seen from Section 5.3), we

63

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

shall focus on the special case where the number of goods in each agent’s bundle is the same.
We say that a size vector § = (s1,...,8,) is s-balanced for a positive integer s if s; = s for
all ¢ € N, and an allocation is s-balanced if it has an s-balanced size vector.

We shall examine the worst-case number of exchanges for identical binary utilities and

for general utilities separately.

5.5.1 Identical Binary Utilities

Given n and s, let fiqpin(n,s) be the smallest integer such that for every instance with n
agents with identical binary utilities and ns goods and every s-balanced allocation A in the
instance, there exists an EF1 allocation that can be reached from A using at most fiq pin (72, 5)

exchanges. We show that fiq pin(n, s) is roughly sn/4.

Theorem 5.5.1. Let n and s be positive integers. If n is even, then

S

nis n
P12 < fan <
9 LQJ > fld,bln(n7 3) =3

If n is odd, then

J < fid,bin(n,8) < s(n = z)n(n * 1)-

n+1]|s(n—1)
2 2n

Proof. Recall that the proof of Theorem 5.4.7 provided a way to compute the optimal number
of exchanges to reach an EF1 allocation from a given initial allocation. To recap, let my be
the total number of valuable goods, F' = |mj/n] be the minimum number of valuable goods
each agent must receive in an EF1 allocation, Ny be the set of agents who have at most F
valuable goods in the initial allocation, N be the set of agents who have at least F'+1 valuable
goods in the initial allocation, co = >y, (F — u(A;)), and e1 =) ey, (u(A;) — (F + 1)).
The optimal number of exchanges is max{co, ¢ }.

We first prove the lower bounds for fiq pin(n, s) by providing an explicit initial allocation
and showing that the optimal number of exchanges to reach an EF1 allocation is at least
|[n/2] s/n] - [n/2], which corresponds to the lower bounds for both even and odd n. In
the initial allocation, |[n/2] agents have s valuable goods each and the remaining [n/2]
agents have s non-valuable goods each. There are a total of m; = |n/2] - s valuable goods,
and F' = [[n/2] s/n]. The value of co is > ;o (F — u(Ai)) = > ien, (/2] 8/n] = 0) =
|[n/2] s/n] - [n/2]. Since max{cy,c1} > co, the lower bounds follow.

We now prove the upper bounds for fiqpin(n,s). Let an s-balanced allocation A =
(A1,...,A,) be given, and let ng = |Ny| and n; = |N1|. We first derive upper bounds for ¢
and c;. Note that m; < sny + ZieNO u(A;). We have

co= > (F—u(A))

i€ Ng
= (n—n)F —) u(A)
i€ Ny
< (n—n)™ =3 ()
1€ Ng

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

1€ Ny
< (1 — —) sny + Z u(A;) | — Z u(A;)
1€ No 1€ No
sn?
Ssmp— L+ Y w(A) =) u(Ay)
i€ Np i€ N
_ s
= (n—mq)

€Ny

- 5 ur-n (2 +)
1€EN1

<3 u(4) —m (%)
i€EN1

<3 u(A) - % 3 u(A)
i€EN, 1€EN]

_ %(n —) S u(Ay)

€Ny
< l(n —n1)sny
= Snﬂ(n —nq).

We have thus shown that max{cg,c1} < ni(n — ni1)s/n. Therefore, the optimal number
of exchanges is at most nj(n — ny)s/n, which is a quadratic expression in n;. When n is
even, ni(n — ny)s/n attains a maximum value at ny; = n/2, and this value is sn/4. When n
is odd, n1(n — n1)s/n attains a maximum value at ny = (n +1)/2 and ny = (n — 1)/2, and
this value is s(n — 1)(n + 1)/4n. The upper bounds for fiq bin(n, s) follow. O

Our result show that the number of exchanges in the worst-case scenario for identical
binary utilities is equal to one-quarter of the total number of goods. In other words, roughly

half of the goods need to be exchanged in the worst-case scenario.

5.5.2 General Utilities

We now proceed to utilities that are not necessarily identical nor binary. Given n and s,
let f(n,s) be the smallest integer such that for every instance with n agents and ns goods
and every s-balanced allocation A in the instance, there exists an EF1 allocation that can be
reached from A using at most f(n, s) exchanges. We shall examine the bounds for f(n,s).
We first derive an upper bound for f(n,s). At a high level, we use an algorithm by
Biswas and Barman (2018) to find an EF1 allocation under cardinality constraints such that
every agent retains roughly s/n of her goods from her original bundle. The algorithm also

distributes the goods in each agent’s initial bundle to the other agents as evenly as possible in

65

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

order to maximize the number of goods that can be exchanged one-to-one, thereby minimizing
the total number of exchanges. One can check that roughly s(n—1)/2 exchanges are required

to reach this EF1 allocation from the initial allocation.

Theorem 5.5.2. Let n and s be positive integers, and let ¢ = |s/n| and r = s — qn be the

quotient and remainder when s is divided by n, respectively. Then,

s(n—1)/2 if 1 =0,
s(n—1)/24+r(n—3)/2+1 otherwise.

f(n,s) <

Moreover, we have f(2,s) < (s —1)/2 for all s.

Proof. Let A be an s-balanced allocation. It suffices to find an EF1 s-balanced allocation
B such that the optimal number of exchanges to reach B from A is at most the expression
given in the theorem statement.

When n = 2, allocate the goods in A; to the two agents in a round-robin fashion with
agent 1 going first, and allocate the goods in Ay to the two agents in a round-robin fashion
with agent 2 going first. Call this new allocation B. Note that B is clearly s-balanced. We
have A; N Bs—; = (s —r)/2 for i € {1,2}, so the optimal number of exchanges required to
reach B from A is (exactly) (s —r)/2. To see that B is EF1, observe that agent 1 does not
envy agent 2 with respect to the goods chosen from A; and is EF1 towards agent 2 with
respect to the goods chosen from Ao, so agent 1 is EF1 towards agent 2 in B; likewise, agent
2 is EF1 towards agent 1 in B. This shows that f(2,s) < (s —1r)/2.

When n > 3, we shall find an EF1 s-balanced allocation B by generalizing the method
for two agents. We define n + r categories of goods C1,...,Cy, D1,..., D, as follows. For
i € N, category C; contains qn goods arbitrarily selected from A; only; note that r goods
remain unselected in A;. Next, we form D,, recursively as follows: let w € {1,...,r} be the
smallest index such that D,, does not have n goods yet, let i € N be the smallest index such
that A; still has unselected goods, arbitrarily select a good in A;, and add it to D,,. At the
end of this process, every category C; has exactly gn goods from A;, and every category Dy,
has exactly n goods from consecutive agents’ bundles, say, A;,, A;, +1,...,4;,.

We now proceed to form B using the algorithm by Biswas and Barman (2018) which finds
an EF1 allocation under cardinality constraints. In particular, there exists an EF1 allocation
B = (Bi,...,By)such that |C;NB;| = |Cj|/n = g foralli,j € N and |D,NBj| = |Dy|/n=1
for all we {1,...,r}, j € N. Also, B is s-balanced because |Bj| = gn +r = s for all j € N.
We shall bound the number of exchanges required to reach B from .A.

For each unordered pair of distinct ¢, j € N, exchange the ¢ goods from C;NB; (which are
in A;) with the ¢ goods from C; N B; (which are in A;). This requires a total of gn(n —1)/2
exchanges. Call this intermediate allocation A" = (A4}, ..., A]). At this point, the only goods
that are possibly in the wrong bundles in A’ (as compared to B) are the goods in all the D,,,
and there are at most rn such goods. For each i € N, let X; = A, N (D U---UD,).

If r = 0, then A" = B, and we are done since the total number of exchanges is gn(n—1)/2 =
s(n—1)/2. Else, r > 0. Consider the directed graph where the vertices are the agents and each
edge e4 represents a good g € G such that if g € A, N B;, then e, = (4,). Proposition 4.4.1

66

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

showed that the number of exchanges required to reach B from A’ is m — c¢*, where ¢* is the
maximum possible cardinality of a partition of the edges of the graph into (directed) circuits.
In A’, gn? goods from all the C; are in the correct bundle by the previous process, and the
edges representing these goods each has its own circuit, say, (¢,4) if the good is in A,. We
shall show that the edges representing the rn goods in all the D,, can be partitioned into
at least 2r — 1 disjoint circuits. This will give at least qgn® + (2r — 1) = sn — (rn — 2r + 1)
as the cardinality of one such partition of the edges of the graph into circuits. Accordingly,
¢ > sn— (rn — 2r + 1), and the number of exchanges required to reach B from A’ is
m —c¢* <rn—2r+1. Then, the number of exchanges required to reach B from A (via A’) is
at most gn(n—1)/2+ (rn—2r+1) = s(n—1)/2+r(n—3)/2+ 1, establishing the theorem.

Let w € {1,...,7} be given. We shall show that there exists a cycle formed with a subset
of the edges representing the goods in D,,. The goods in D,, come from consecutive agents’
bundles in A’, say, agents i,, to j,,. Every agent receives exactly one good from D,, in B; in
particular, agents i, to j, each receives exactly one good from D,,. Consider the good g in
DN B;,. If g is in X;,,, then the edge g = (iw, iw) is a desired cycle. Otherwise, g belongs
to some agent i’ € {iy + 1,...,ju} in A’. Then, the edge ¢4 is (¢/,4,). Next, we consider
the good ¢’ in D,, N By, and find the agent that has ¢’ in A’. The edge representing ¢’ then
points to ¢ from that agent. By repeating this, we eventually find a cycle formed with some
of these edges and with a subset of the agents i,, to j,, as vertices. Let G, C D,, be the set of
goods that are represented by the edges in this cycle. Note that each X; for i € {iy,...,Jw}
contains at most one good in Gy, and each X; for i € N \ {iy,...,jw} does not contain any
good in Gy,.

Now, consider the goods represented by the edges of the r cycles—one for each w. Note
that these cycles are disjoint since the sets G, are pairwise disjoint. Let Go = |J.,_; Gu.
We claim that |G| < 2n. Since the r goods in X; are entirely contained in Dp, we have
| X1NG1| <1and | X1NGy| = 0forw € {2,...,r}, which implies that ||, _;(X1NGy)| < 1.
Now, for each i € N\ {1}, the r goods in X; can only be contained in at most two D,,—to see
this, observe that if the r goods are contained in Dy, Dyyy1, and Do, then Dy C X;,
which implies that r» = | X;| > |Dy4+1| = n, a contradiction. Thus, we have | X; NG| < 1 for
all w e {1,...,r}, and | X; N Gy| = 1 for at most two w, and so |J,,_; (X; N Gy)| < 2. Since
Go = Ujen Up—1(Xi N Gy), we have |G| < 1+ (n— 1) -2 < 2n, proving the claim.

Finally, consider the edges representing the rn goods in all the D,,. We have shown that
fewer than 2n of these edges can be used to form r disjoint circuits (in fact, cycles). There
are more than rn — 2n = (r — 2)n edges remaining. Since we can always require every circuit
to have length at most n, there exists a partition of the remaining edges into more than
r — 2 disjoint circuits, i.e., at least r — 1 disjoint circuits. The total number of circuits in this

partition is at least r + (r — 1) = 2r — 1. This completes the proof. O

If no good is involved in more than one exchange, then s(n — 1)/2 exchanges means that
a total of s(n —1) = m(1 —1/n) goods are exchanged. When n is large, the fraction of goods
involved in the exchanges becomes close to 1. While this bound might not seem impressive, we
show next that it is, in fact, already essentially tight. Specifically, we establish a lower bound

for f(n,s) by constructing an instance (with binary utilities) and an s-balanced allocation

67

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

A in the instance such that roughly s(n — 1)/2 exchanges are necessary to reach an EF1

allocation from A.

Theorem 5.5.3. Let n and s be positive integers, and let ¢ = |s/n| and r = s — gn be the

quotient and remainder when s is divided by n, respectively. Then,

s(n—1)/2 ifr=0,
s(n—1)/2—(n—1r)/2 otherwise.

fn,s) >

Proof. Let G = {g;; | 1 <i<n,1 <j < s} be the set of goods such that each good g; ; is
worth 0 to agent 7 and worth 1 to all agents except i. We have u;(G) = s(n — 1). We claim
that an EF1 allocation requires every agent to receive a bundle worth at least s — g — [r/n]
from her perspective. To see this, suppose on the contrary that some agent i receives a bundle
worth less than s —g— [r/n] to her. For the allocation to be EF1, every other agent receives a
bundle worth at most s —q— [r/n] to agent 7. Then, we must have u;(G) < n(s—q—[r/n]).
When r = 0, it holds that [r/n] = 0 and n(s—g—[r/n]) = n(s—q) = sn—s = s(n—1). When
r > 0, it holds that [r/n] =1and n(s—qg—[r/n|) =n(s—q—1) =sn—(gn+r)—(n—r) =
s(n—1)—(n—r) < s(n—1). In both cases, we have u;(G) < s(n—1) = u;(G), a contradiction.

Let A be the allocation such that A; = {g;; | 1 < j < s} for every i. In order to
reach an EF1 allocation, each agent must give away at least s — ¢ — [r/n| goods from her
bundle in order to receive from the other agents the same number of valuable goods from
her perspective. The total number of goods that are currently in the wrong hands across all
agents is at least n(s—q— [r/n]), and the optimal number of exchanges required to reach an
EF1 allocation is at least half of this number, since each exchange places at most two goods
in the correct hands. When r = 0, the optimal number of exchanges required is at least
n(s—q—[r/n])/2=s(n—1)/2. When r > 0, the optimal number of exchanges required is
at least n(s —q — [r/n])/2=s(n—1)/2 — (n—1r)/2. O

For two agents, Theorems 5.5.2 and 5.5.3 give a tight bound of f(2,s) = (s —r)/2 =
m/4 —r/2 = |m/4]. This means that in the worst-case scenario, the number of exchanges
required to reach an EF1 allocation is roughly one-quarter of the total number of goods
between the two agents, or equivalently, roughly half of the goods need to be exchanged
between the two agents to reach an EF1 allocation.

Theorems 5.5.2 and 5.5.3 also give a tight bound of f(n,s) = s(n —1)/2 whenever s is
divisible by n. By observing the proof of Theorem 5.5.2, we can achieve an EF1 allocation
with f(n,s) exchanges without involving each good in more than one exchange. This means
that a (1 — 1/n) fraction of all goods need to be exchanged in the worst-case scenario.
Intuitively, this happens when each agent only values the goods in the bundle of every agent
except her own in the initial allocation, and therefore needs to ensure that these goods are

evenly distributed among all agents including herself.

68

Chapter 5: Reforming an Unfair Allocation by Exchanging Goods

5.6 Conclusion

In this chapter, we have studied the reformability of unfair allocations and the number of
exchanges required in the reformation process. We revealed several distinctions in the com-
plexity of these problems based on the number of agents and their utility functions, and
showed that the number of exchanges required to reach an EF1 allocation is relatively high
in the worst case.

One could ask whether the hardness results in Section 5.4 still hold if we only require the
computation to be correct up to a certain factor. While our worst-case bounds for general
utilities are already exactly tight in certain scenarios and almost tight generally, an open
question is to tighten them for more than two agents when the number of goods in each
agent’s bundle is not divisible by the number of agents. Additionally, although these bounds
also work for binary utilities, one could try to derive bounds for identical utilities—we provide
some insights in Appendix B.1. Another interesting direction is to require each exchange
to be beneficial for both agents involved—in Appendix B.2, we show that the problem of
deciding whether a given initial allocation can be reformed into an EF1 allocation using
only beneficial exchanges is NP-complete for binary utilities. Finally, beyond EF1, one could

consider reforming an allocation using other notions as fairness benchmarks.

69

Part 11

Divisible Goods

70

Chapter 6

On Connected Strongly-Proportional
Cake-Cutting

6.1 Introduction

Consider a group of siblings who inherited a land estate and would like to divide it fairly
among themselves. The simplest procedure for attaining a fair division is to sell the land and
divide the proceeds equally; this procedure guarantees each sibling a proportional share of
the total land value.

But in some cases, it is possible to give each sibling a much better deal. As an example,
suppose that the land estate contains one part that is fertile and arable, and one part that
is barren but has potential for coal mining. This land is to be divided between two siblings,
one of whom is a farmer and the other is a coal factory owner. If we give the former piece of
land to the farmer and the latter piece of land to the coal factory owner, both siblings will
feel that they receive more than half of the total land value. Our main question of interest
is: when is such a superior allocation possible?

We study this question in the framework of cake-cutting. In this setting, there is a divisible
resource called a cake, which can be cut into arbitrarily small pieces without losing its value.
The cake is represented simply by an interval which can model a one-dimensional object,
such as time. There are n agents, each of whom has a personal measure of value over the
cake. The goal is to partition the cake into n pieces and allocate one piece per agent such
that the agents feel that they receive a “fair share” according to some fairness notion.

A common fairness criterion—nowadays called proportionality—requires that each agent
i receives a piece of cake that is worth, according to i’s valuation, at least 1/n of the total
cake value. In his seminal paper, Steinhaus (1948) described an algorithm, developed by his
students Banach and Knaster, that finds a proportional allocation; moreover, this allocation
is connected—each agent receives a single contiguous part of the cake. This algorithm is now
called the last diminisher algorithm.

But the guarantee of proportionality allows for the possibility that each agent receives a
piece worth ezactly 1/n; when this is the case, there is little advantage in using a cake-cutting

procedure over selling the land and giving 1/n to each partner. A stronger criterion, called

71

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

strong-proportionality or super-proportionality, requires that each agent i receives a piece of
cake worth strictly more than 1/n of the total cake value from i’s perspective. This raises
the question of when such a strongly-proportional allocation exists.

Obviously, a strongly-proportional allocation does not exist when all the agents’ valua-
tions are identical, since if any agent receives more than 1/n of the cake, then some other
agent must receive less than 1/n of the cake. Interestingly, in all other cases, a strongly-
proportional allocation exists. Even when two agents have non-identical valuations, there
exists an allocation in which all n agents receive more than 1/n of the total cake value from
their perspectives (Dubins and Spanier, 1961; Rebman, 1979). Woodall (1986) presented an
algorithm for finding such a strongly-proportional allocation. Barbanel (1996a) generalized
this algorithm to agents with unequal entitlements, and Jank6 and Jo6 (2022) presented a
simple algorithm for this generalized problem and extended it to infinitely many agents.

The problem with all these algorithms is that, in contrast to the last diminisher algorithm
for proportional cake-cutting, they do not guarantee a connected allocation. Connectivity is
an important practical consideration when allocating cakes; for example, if the cake is the
availability of a meeting room by time and needs to be allocated to different teams throughout
the day, then a two-hour slot is easier for a team to utilize than six disjoint twenty-minute
slots. Indeed, connectivity is the most commonly studied constraint in cake-cutting literature
(Stromquist, 1980; Su, 1999; Stromquist, 2008; Goldberg et al., 2020; Suksompong, 2021;
Elkind et al., 2022), and relaxing this constraint may present each agent instead with a
“countable union of crumbs” (Stromquist, 1980).

Thus, our main questions of interest are:

What are the necessary and sufficient conditions for the existence of a connected
strongly-proportional cake allocation? What are the query complexities to deter-

mine these conditions?

6.1.1 Our Results

The cake to be allocated, modeled by a unit interval [0, 1], is to be divided among n agents
who may have different entitlements for the cake, with the entitlements summing to 1. Each
agent receives an interval of the cake that is disjoint from the other agents’ intervals. Each
agent has a valuation function (or utility function) on the intervals of the cake that is non-
negative, finitely additive, and continuous with respect to length. In this regard, the value of
a single point is zero to every agent, and we can assume without loss of generality that agents
receive closed intervals of the cake, and that any two agents’ pieces can possibly intersect
at the endpoints of their respective intervals. In order to access agents’ valuations in the
algorithms, we allow algorithms to make eval and (right-)mark! queries of each agent as in
the standard Robertson-Webb model (Robertson and Webb, 1998). More details of our model
are provided in Section 6.2.

In Section 6.3, we consider hungry agents—those who have positive valuations for any

part of the cake with positive length. For agents with equal entitlements, we show that

We choose right-mark instead of the usual left-mark for convenience. Our algorithms still work if only
left-mark queries are available (together with eval). See Appendix C.1 for a more detailed explanation.

72

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

a connected strongly-proportional allocation exists if and only if there are two agents with
different r-marks for some r € {1/n,2/n,...,(n —1)/n}, where an r-mark is a point that
divides the cake into two such that the left part of the cake is worth r to that agent. This
implies that the existence of such an allocation can be decided using n(n — 1) queries. The
proof of sufficiency is constructive, so a connected strongly-proportional allocation can be
computed using O(n?) queries if it exists. We also prove that any algorithm that decides
whether a connected strongly-proportional allocation exists must make at least n(n — 1)/2
queries, giving an asymptotically tight bound (within a factor of 2) of ©(n?). For agents
with possibly unequal entitlements, we show that a lower bound number of queries to decide
whether a connected strongly-proportional allocation exists is n-2"~2. Together with a result
from Section 6.4 later on the upper bound number of queries, this yields a tight bound of
©(n - 2") queries.

In Section 6.4, we consider agents who are not necessarily hungry. The characterization
from Section 6.3 for hungry agents with equal entitlements does not work for non-hungry
agents, which motivates us to find another characterization by considering permutations of
agents. We show that a connected strongly-proportional allocation exists if and only if there
exists a permutation of agents such that when the agents go in the order as prescribed by
the permutation and make their rightmost marks worth their entitlements to each of them
one after another, the mark made by the last agent does not reach the end of the cake. This
result holds regardless of the agents’ entitlements. While an algorithm to determine this
condition requires n-n! queries, we show that this number can be reduced by a factor of 2¢(™)
to n - 2"~! via dynamic programming. We also prove a lower bound number of queries of
Q(n-2™) to determine this condition, even for agents with equal entitlements. Therefore, for
agents who are not necessarily hungry, we also obtain a tight bound of ©(n - 2"), whether the
entitlements are equal or not. A connected strongly-proportional allocation can be computed
using O(n - 2™) queries if it exists.

Table 6.1 summarizes of our results from Sections 6.3 and 6.4.

‘ hungry agents general agents

equal entitlements | ©(n?) (Theorem 6.3.5) O(n-2") (Theorem 6.4.7)

possibly unequal
entitlements

O(n - 2") (Theorem 6.3.7) ©O(n-2") (Theorem 6.4.7)

Table 6.1: Number of queries required to decide the existence of a connected strongly-
proportional allocation of a cake for n agents, and to compute one if it exists.

In Section 6.5, we consider a stronger fairness notion where each agent ¢ needs to receive a
connected piece of cake that is worth more than w; + z for some small z, where w; is agent i’s
entitlement. We show that the number of queries needed to decide whether such an allocation
exists is in O(n - 2™), even for hungry agents with equal entitlements. This is analogous to
the results in Sections 6.3.2 and 6.4, which shows that the stronger fairness notion considered
in this section does not make the problem any harder (nor easier).

In Section 6.6, we consider a connected strongly-proportional allocation of a pie instead of

a cake, and show that no finite algorithm can decide the existence of such an allocation even

73

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

for hungry agents with equal entitlements, demonstrating the intractability of the problem

in this new setting.

6.1.2 Further Related Work

A weaker fairness notion of proportionality is well-studied in cake-cutting literature. It is
known that a connected proportional allocation always exists for agents with equal entitle-
ments and such an allocation can be computed using ©(nlogn) queries (Steinhaus, 1948;
Even and Paz, 1984; Woeginger and Sgall, 2007). Cseh and Fleiner (2020) presented an al-
gorithm that finds a possibly non-connected proportional allocation for agents with general
entitlements—in particular, their algorithm uses a finite but unbounded number of queries
when agents have irrational entitlements. In contrast, we show that a connected strongly-
proportional allocation may not exist, and such an allocation can be computed (if it exists)
using ©(n - 2") queries. A number of works studied the number of cuts required for a propor-
tional allocation, rather than the number of queries (Segal-Halevi, 2019; Crew et al., 2020).
A parallel line of work studied a stronger fairness notion of super envy-freeness: it requires,
in addition to strong-proportionality, that each agent values the piece of every other agent
at strictly less than 1/n the total cake value (Barbanel, 1996b; Webb, 1999; Chéze, 2020).

6.2 Preliminaries

Refer to the preliminaries in Sections 2.1 and 2.3. We now describe other preliminaries specific
to this chapter.

An allocation (A, ..., Ay) is connected if A; is a single (closed) interval for each i € N.
We assume that F;(x) := u;([0,x]) is a continuous function on the cake C' = [0, 1], and hence
u;({x}) = 0 for all z € C. Therefore, F; is a non-decreasing function on C' with F;(0) = 0,
Fi(1) =1, and w;([z,y]) = Fi(y) — Fi(z). An agent i is hungry if u;(X) > 0 for all intervals
X C C with positive length; this is equivalent to the condition that Fj is strictly increasing.

Each agent i has an entitlement w; > 0 of the cake such that Zie N w; = 1. Let w denote
(w1, ...,wy). We say that agents have equal entitlements if w; = 1/n for all i € N. For each
subset N’ C N of agents, define wy: = ZieN/ w;. Note that wyg = 0 and wy = 1. We say
that agents have generic entitlements if wy, # wn, for all distinct Ny, No C N.

An instance consists of the set of agents N, their valuation functions (u;);en, and their
entitlements w.2

Given an instance, an allocation (Aq,..., A,) is proportional (resp. strongly-proportional)
if u;(A;) > w; (resp. u;(A;) > w;) for all i € N. For agents with equal entitlements, a
proportional (resp. strongly-proportional) allocation requires every agent to receive a piece
of cake with value at least (resp. greater than) 1/n.

Algorithms can make eval and mark queries of each agent in the Robertson-Webb model.
More specifically, for each agent i € N, value r € [0, 1], and points z,y € C with x < y,

EVAL;(z,y) returns w;([z,y]), and MARK;(x,r) returns the rightmost (largest) point z € C

2An instance as defined in Chapter 2 excludes the entitlements, but we include the entitlements in this
chapter.

74

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

such that u;([x,z]) = r (such a point exists due to the continuity of the valuations); if
u;([z,1]) < r, then MARK;(z,r) returns oo.

For i € N and r € [0,1], a point x € C is an r-mark of agent i if w;([0,z]) = r.
While the point returned by MARK;(0,r) is an r-mark of agent i, the converse is not true
since MARK;(0,7) only returns the rightmost r-mark of agent i. However, when agent i is
hungry, then the r-mark is unique, and the two notions coincide. Let 7 denote the subset
{1/n,2/n,...,(n—1)/n} of C—we shall consider r-marks for € 7 in Section 6.3.1.

6.3 Hungry Agents

We begin with the simpler case where all agents are hungry. We first state a result which
finds a connected strongly-proportional allocation of a cake for hungry agents using a small
number of queries when given a connected proportional allocation in which one agent has a
strongly-proportional piece. The proof proceeds by slightly moving the boundary between
two adjacent agents’ pieces such that an agent j who received exactly w; eventually gets a

slightly larger piece.

Lemma 6.3.1. Let an instance with n hungry agents be given. Suppose that we are given
a connected proportional allocation (Ai,...,A,) such that u;(A;) > w; for some i € N.
Then, there exists a connected strongly-proportional allocation, and such an allocation can be

computed using O(n) queries.

Proof. First, we find the values of uj(A;) for all j € N. If uj(A;) > w; for all j € N, then
we are done. Otherwise, there exist two distinct agents i, j € N with neighboring pieces such
that u;(A;) > w; and u;(A;) = w;. By slightly moving the boundary between A; and A;, we
can get a new allocation in which agents ¢ and j each receives a piece worth more than w;
and w; respectively. To formally describe the process of moving the boundary, we consider
two complementary cases.

Case 1: A; is to the left of A;. Denote A; = [z1,2] and A; = [22,23]. Let
y = MARK;(21,w;); note that y € (21, z2) since u;(A;) > w;. Let y* be the midpoint of y
and z2. Adjust the two agents’ pieces such that agent ¢ now receives [z1, y*] and agent j now

receives [y*, z3]; see Figure 6.1 for an illustration.

worth w; to agent ¢ worth w; to agent j
4
I T T 1 1
21 Y y* 22 23
agent 7’s new piece agent j’s new piece

Figure 6.1: Agent i’s and j’s new pieces in the proof of Lemma 6.3.1.

Since [z1,y*] 2 [21, y] and the latter is worth w; to hungry agent i, the new piece, [21, y*],
is worth more than w; to agent i. Likewise, since [y*, 23] D [22, 23] and the latter is worth w;
to hungry agent j, the new piece, [y*, z3], is worth more than w; to agent j.

Case 2: A; is to the right of A;. Denote A; = [z1,22] and A; = [22,23]. Let

y = MARK; (22, u;i(A4;) —w;); note that y € (22, z3) since u;(A;) > w;. Let y* be the midpoint

75

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

of zo and y. Adjust the two agents’ pieces such that agent j now receives [z1, y*] and agent ¢
now receives [y*, z3].

Since [z1,y*] 2 [#1, 22] and the latter is worth w; to hungry agent j, the new piece, [21,y"],
is worth more than w; to agent j. Likewise, since [y*, 23] 2 [y, 23] and the latter is worth w;
to hungry agent i (due to additivity, we have u;([y, z3]) = u;([22, 23]) — wi([22,y]) = w;), the
new piece, [y*, z3], is worth more than w; to agent .

In both Case 1 and Case 2, only agent i’s and j’s pieces change; all of the other agents’
pieces do not change. All in all, one additional agent j receives more than w; of the cake.
Proceeding this way at most n — 1 times yields a connected strongly-proportional allocation.

Finding the values of all u;(A;) at the beginning requires n queries, while the adjustment
of the boundaries between two agents’ pieces requires a constant number of queries, so the

total number of queries is in O(n). O

We present the results separately for agents with equal entitlements and agents with
possibly unequal entitlements. For n hungry agents with equal entitlements, we state in
Section 6.3.1 a simple necessary and sufficient condition for the existence of a connected
strongly-proportional allocation. We provide an asymptotically tight bound of ©(n?) for the
number of queries needed by an algorithm to determine the existence of such an allocation,
as well as to compute one such allocation if it exists. For agents with possibly unequal
entitlements, we show in Section 6.3.2 that a lower bound number of queries needed to decide

the existence of a connected strongly-proportional allocation is in Q(n - 2™).

6.3.1 Equal Entitlements

Recall that 7 = {1/n,2/n,...,(n —1)/n}. Our condition uses a particular set of r-marks:
those with r € 7.

Theorem 6.3.2. Let an instance with n hungry agents with equal entitlements be given.
Then, a connected strongly-proportional allocation exists if and only if there exist two distinct
agents i,j € N and r € T such that the r-mark of agent i is different from the r-mark of
agent j.

Proof. Since the agents are hungry, there is exactly one r-mark of agent i for each r € [0, 1]
and i € [n].

(=) We prove the contraposition. Suppose that for each r € T, every agent has the same
r-mark. Every agent also has the same 0-mark of 0 and the same 1-mark of 1. For each
t € {0,...,n}, denote the common t/n-mark by z;.

Consider now any connected allocation, which is represented by n — 1 cuts on the cake.
For each t € {1,...,n}, denote the t-th cut from the left by z;; also denote zyp = 0 and
x, = 1. Each agent receives a piece [z;_1, 24| for some t € {1,...,n}, and every such piece is
allocated to some agent.

Since g = 2o and x,, = z,, there must be some t € {1,...,n} for which z;_1 > 24

and z; < z. This means that the piece [x;_1, 2] is contained in the interval [z;_1, z;]. Let 4

76

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

denote the agent who receives the piece [z;_1,2¢]. Then, agent i’s value for her piece is
ui([wi—1, 24]) < wil[ze-1, 2¢)) = wi([0, 2¢)) — wi([0, 1)) = t/n — (t = 1)/n =1/n,

so the allocation is not strongly-proportional. This holds for any connected allocation; there-
fore, no connected strongly-proportional allocation exists.

(<) Suppose that there exist two distinct agents i, j € N and r € T such that the r-mark
of agent ¢ is different from the r-mark of agent j. We shall construct a connected strongly-
proportional allocation by first constructing a connected proportional allocation such that at
least one agent receives a piece with value more than 1/n, then use Lemma 6.3.1 to construct
a strongly-proportional one.

Let t € {1,...,n — 1} be the integer such that r = t/n. Let i;, be an agent with the
leftmost (smallest) r-mark among all the agents, and ir be an agent with the rightmost
(largest) r-mark among all the agents (if there are multiple agents with the same leftmost
or rightmost r-mark, we can choose an agent arbitrarily in each case). Denote the leftmost
r-mark by z; and the rightmost r-mark by zgr. Note that z; < zg, since there are agents
with different r-marks.

Since there are n agents, there are n r-marks (possibly some of them are equal) in the
interval [z1,zgr|. Let x € [z1,zgr| be the t-th r-mark from the left. Then, there exists a
partition of the agents into two subsets N1 and Ny such that

e |Ni| =t, and the r-mark of all agents in N; is at most x, and
e |N3| =n —t, and the r-mark of all agents in Ny is at least .

Every agent in N; values [0, z] at least r, and every agent in Ny values [z, 1] at least 1 —r;

see Figure 6.2 for an illustration.

agents in V7 | agents in N»

4l |
il 1

ZR 1

L | N
[T

0 <L

T

Figure 6.2: The r-marks of all the agents in the proof of Theorem 6.3.2. The point z is at
one of the r-marks and divides agents into N7 and No.

Next, we consider any connected proportional cake-cutting algorithm as a black box (e.g.,
last diminisher). We apply the algorithm on [0, z] and N such that every agent in N; receives
a connected piece with value at least 1/t of her value of [0, z], and apply the algorithm on [z, 1]
and Na such that every agent in Na receives a connected piece with value at least 1/(n — t)
of her value of [z,1]. We show that this allocation (of C' = [0, 1]) is proportional. For an
agent in N7, since she values [0,] at least r = t/n, the piece she receives has value at least
(1/t)r = 1/n. Likewise, for an agent in Ny, since she values [z, 1] at least 1 —r = (n —t)/n,
the piece she receives has value at least (1/(n —1t))(1 —r) = 1/n.

Now, we show that agent iy, or ir (or both) receives a piece with value strictly more than

1/n. If © = zp, then we claim that agent iy, receives such a piece. Since the r-mark of agent

7

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

ir is at z;, < x, we have i, € Nj. Since agent iy, is hungry, the piece [0,] is worth more
than 7 to her, and so the piece she receives has value more than (1/t)r = 1/n. Otherwise,

T < zR, and a similar argument shows that agent ¢ receives such a piece.
Having established a connected proportional allocation in which at least one agent receives
more than 1/n, we apply Lemma 6.3.1 to obtain a connected strongly-proportional allocation.
O

It is interesting to compare the condition in Theorem 6.3.2 with the one for non-connected
allocations. In both cases, a disagreement between two agents is sufficient for allocating all
n agents more than their fair share. However, in the non-connected case, the disagreement
can be in an r-mark for any r € (0,1) (see the discussion in Section 6.1), whereas in the
connected case, the disagreement should be in an r-mark for some r € T the r-marks for
other values of r are completely irrelevant.

It is clear from Theorem 6.3.2 that we can decide whether a connected strongly-propor-
tional allocation exists for hungry agents with equal entitlements by checking the t/n-marks
of all of the n agents for all ¢ € {1,...,n — 1}. This is described in Algorithm 6.1. The

number of queries used in the algorithm is at most n(n — 1).

Algorithm 6.1 Determining the existence of a connected strongly-proportional allocation
for n hungry agents with equal entitlements.

1: fort=1,....n—1do

2: z; < MARK1(0,¢/n) > agent 1’s ¢/n-mark
3 fori=2,...,ndo

4: if MARK;(0,t/n) # 2z then return true

5 end for

6: end for

7. return false

Theorem 6.3.3. Algorithm 6.1 decides whether a connected strongly-proportional allocation

exists for n hungry agents with equal entitlements using at most n(n — 1) queries.

Next, we show an asymptotically tight lower bound for the number of queries required to
decide the existence of such an allocation for hungry agents. The idea behind the proof is that
we must check the ¢/n-marks of all the agents and all ¢t € {1,...,n — 1}; otherwise, we can
craft two instances—one with the t/n-marks coinciding, and the other with some ¢/n-marks
not coinciding—that are consistent with the information obtained by the algorithm and yet
give opposite results. Doing this check requires at least n(n — 1)/2 queries, as each query

provides information on at most two points.

Theorem 6.3.4. Any algorithm that decides whether a connected strongly-proportional allo-

cation exists for n hungry agents with equal entitlements requires at least n(n —1)/2 queries.

Proof. Suppose by way of contradiction that some algorithm decides the existence of a con-
nected strongly-proportional allocation for n hungry agents with equal entitlements using

fewer than n(n — 1)/2 queries. We assume that for all i € N, r € [0,1] and = € C,

78

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

EVAL;(0,z) returns the value z and MARK;(0,r) returns the point r. We make the fol-
lowing adjustments to the algorithm: whenever the algorithm makes an EVAL;(z,y) query,
it is instead given the answers to MARK;(0,z) = z and MARK;(0,y) = vy, and whenever the
algorithm makes a MARK;(z,) query, it is instead given the answers to MARK; (0, z) = x and
MARK;(0,z +7) = x + 7.3 This means that every query made by the algorithm provides the
algorithm only with information on at most fwo r-marks of some agent and no other infor-
mation that cannot be deduced from these r-marks. Note that the algorithm can still deduce
the values of EVAL;(x,y) and MARK;(z,7) by taking the difference between the two answers
given, which means that the information provided to the algorithm after the adjustment is a
superset of the information provided to the algorithm before the adjustment.

The answers given to the algorithm are consistent with the instance where every agent’s
valuation is uniformly distributed over the cake—in which case there is no connected strongly-
proportional allocation of the cake by Theorem 6.3.2—and so the algorithm should output
“false”. However, we shall now show that the information provided to the algorithm is also
consistent with an instance with a connected strongly-proportional allocation. This means
that the algorithm is not able to differentiate between the two, resulting in a contradiction.

Since fewer than n(n — 1)/2 queries were made by the algorithm, fewer than n(n — 1)
r-marks (for r € (0, 1)) of all the agents are known. In particular, there exists an agent i € N
such that fewer than n—1 r-marks of agent i are known, and hence there exists t € {1,...,n—
1} such that the t/n-mark of agent ¢ is not known. We now modify agent i’s valuation function
slightly from the uniform distribution. Let € € (0,1/n) be a number such that every known
r-mark of agent ¢ is of distance more than e from t/n. Let the t/n-mark of agent i to be at
t/n+e. Construct agent i’s valuation function such that its distribution between all known r-
marks of agent ¢ (including the new ¢/n-mark) is uniform within the respective intervals—note
that this construction is valid and unique since these known r-marks are strictly increasing
in r. Let the other agents’ valuation functions be uniformly distributed on the whole cake.
Then, agent ¢’s t/n-mark is different from every other agents’ t/n-mark. By Theorem 6.3.2,
this instance admits a connected strongly-proportional allocation of the cake, forming the

desired contradiction. O

Theorems 6.3.3 and 6.3.4 show that the number of queries required to determine the
existence of a connected strongly-proportional allocation for n hungry agents with equal
entitlements is in ©(n?). The same can be said for computing such an allocation—we can
modify Algorithm 6.1 using the details in the proof of Theorem 6.3.2 to output a connected

strongly-proportional allocation of the cake instead, if such an allocation exists.

Theorem 6.3.5. The number of queries required to decide the existence of a connected
strongly-proportional allocation for n hungry agents with equal entitlements, or to compute

such an allocation if it exists, is in ©(n?).

3 Assuming z + r < 1; otherwise, MARK; (0, + 7) = oo.

79

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

6.3.2 Possibly Unequal Entitlements

We now consider hungry agents who may not necessarily have equal entitlements. Since the
entitlement of a subset of agents may not be a multiple of 1/n, we cannot use the condition
in Theorem 6.3.2 which uses r-marks for » € 7. This requires us to devise a more general
condition to determine the existence of a connected strongly-proportional allocation, which
can be checked using O(n-2™) queries. Since the condition also works for non-hungry agents,
we defer the discussion to Section 6.4.1 (see Theorems 6.4.4 and 6.4.5).

We now show an asymptotically-tight lower bound for the case when agents may have un-
equal entitlements. We show an even stronger result: for every vector of generic entitlements,
the number of queries required to decide the existence of a connected strongly-proportional
allocation is in Q(n - 2™). The proof uses an adversarial argument similar to the one in
Theorem 6.3.4.

Theorem 6.3.6. Let w be any vector of generic entitlements. Then, any algorithm that
decides whether a connected strongly-proportional allocation exists for n hungry agents with

entitlements w requires at least n - 22 queries.

Proof. Since the entitlements are generic, we can arrange the 2" different subsets of agents in
strictly increasing order of their entitlements, i.e., we label the subsets of N as Ni,..., Non
such that wy, < --- < wp,,. Note that Ny = & and No»n = N, giving wy, = 0 and wy,, = 1.

Let d = minzi_ll(ka .1 — wn,) be the smallest gap between entitlements of different
agent subsets. For each k € {2,...,2" — 1}, define I, = [wn,, wn, +d/2]. Note that, by the
choice of d, all the I, are pairwise disjoint.

Suppose by way of contradiction that some algorithm decides the existence of a connected
strongly-proportional allocation for n hungry agents with generic entitlements using fewer

2"=2 queries. We follow the construction in the proof of Theorem 6.3.4 where we

than n -
modify the algorithm such that every query returns information on at most two r-marks
of some agent, and these information are consistent with the instance where every agent’s
valuation is uniformly distributed over the cake. Therefore, the algorithm should output
“false”. We shall now show that the information provided to the algorithm is also consistent
with an instance with a connected strongly-proportional allocation. This means that the
algorithm is not able to differentiate between the two, resulting in a contradiction.

2n72

Since fewer than n - queries were made by the algorithm, there exists an agent ¢ € N

such that at most 272

— 1 queries about the r-marks of agent i (for » € (0,1)) are made.
Since each query returns information on at most two r-marks, at most 2! — 2 r-marks of
agent i are known. There are 2"~ — 1 non-empty subsets Nj of N that do not contain agent
i, so there exists k € {2,...,2" — 1} such that i ¢ Ny and no known r-mark of agent 7 is in
the interval I;. Let w = wy,. Let the w-mark of agent i be at w + d/4. Construct agent i’s
valuation function such that its distribution between all known r-marks of agent ¢ (including
the new w-mark) is uniform within the respective intervals—note that this construction is
valid and unique since these known r-marks are strictly increasing in r. Let the other agents’
valuation functions be uniformly distributed on the whole cake.

We show that a connected strongly-proportional allocation exists. The leftmost pieces

80

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

are allocated to agents in Ny in any arbitrary order, where every agent j € Nj receives
a piece of length w;. Agent i receives the piece [w,w + w;]. Finally, the remaining cake
is allocated to the remaining agents such that every agent j receives a piece of length w;.
Note that every agent j € N \ {i} receives a piece worth exactly w;, since their valuation
functions are uniform. The value of [w + d/4,w + w;]| is w; to agent i, so agent i’s piece
[w, w4+ w;| 2 [w+ d/4,w + w;] is worth more than w; to hungry agent i. Therefore, the
allocation is proportional (and clearly connected) with agent i receiving a piece strictly greater
than w;. By Lemma 6.3.1, a connected strongly-proportional allocation of the cake exists,

forming the desired contradiction. O

Using the results from Theorem 6.3.6 and from Theorem 6.4.5 later, we get a tight bound

for hungry agents with possibly unequal entitlements.

Theorem 6.3.7. The number of queries required to decide the existence of a connected
strongly-proportional allocation for n hungry agents, or to compute such an allocation if it

exists, is in ©(n - 2™).

The lower bound in Theorem 6.3.6 is derived from the number of different values of wy, .

In particular, a lower bound number of queries is
1 n
52 {wn': @ # N' C N,i¢ N'}|. (6.1)
i=1

For generic entitlements, each term in the sum equals 2"~ — 1, so we get roughly the

27=2 in Theorem 6.3.6. In contrast, for equal entitlements, each term in

lower bound of n -
the sum equals n — 1, so we get the lower bound of n(n —1)/2 in Theorem 6.3.4.

For entitlements that are neither generic nor equal, the resulting lower bound is between
these two extremes. It is an interesting open question to find an algorithm with a query
complexity matching the lower bound in (6.1) in these intermediate cases. The main difficulty
in extending our algorithm for equal entitlements (Algorithm 6.1) to unequal entitlements
is due to the step in Theorem 6.3.2 where we used a black-box algorithm for proportional
cake-cutting (such as last diminisher) to divide a part of the cake among the agents in N;
and the other part among the agents in Ny. Such a black box algorithm does not exist
for unequal entitlements, since a connected proportional allocation might not even exist for

unequal entitlements in the first place.

6.4 General Agents

We now consider the general case where agents need not be hungry. Recall that the condition
we developed in Theorem 6.3.2 involves checking for the coincidence of r-marks of all the
agents for r € 7. However, there are some difficulties in generalizing the condition for non-
hungry agents, even for equal entitlements. The proof of Theorem 6.3.2 relies crucially on
the fact that an r-mark of an agent is unique, which may not be true for non-hungry agents.
For each agent i € N, F;(x) = u;([0, z]) is a continuous function with domain C = [0, 1] and

range [0, 1]. For each r € [0, 1], the set of r-marks of agent i is F; ({r}). Since {r} is a closed

81

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

set and Fj is continuous, F; *({r}) is a non-empty closed set. If agent i is not necessarily
hungry, then the fact that F; is non-decreasing implies the set of r-marks of agent 7 is thus
a non-empty closed interval (though possibly the singleton set [z, z] = {z}).

Another difficulty is that there may be different instances with the same t/n-marks but
give different results regarding the existence of such an allocation. We show this via the

following two examples.

Example 6.1. Consider a cake-cutting instance for n = 3 agents with equal entitlements
where the cake is made up of 11 homogenous regions. The following table shows the agents’

valuations for each region.

Alice |9 0 0 0 9 0 0 0 0 0 9
Bob 144\315\1 1 2 4 1
Chana18\221112\441

All agents value? the entire cake at 27, so the t/n-marks are at values 9 and 18. Alice has two
intervals of ¢/n-marks—the two intervals of zeros. Bob and Chana each has two ¢/n-marks
that are single points, denoted by vertical lines—note that both Bob and Chana are hungry.
We show that no connected strongly-proportional allocation exists.

Suppose by way of contradiction that a connected strongly-proportional allocation exists.
Alice must receive a piece with value larger than 9, so her piece must touch the middle 9 as
well as either the left 9 or the right 9. In the former case, the cake remaining for Bob and

Chana is at most:

Bob 1 5 1 1
Chana |1 1 1 2

—_

—_

In the latter case, the remaining cake is at most:

Bob 1 4 4 3 1
Chana |1 8 2 2 1

In both cases, no matter how the remaining cake is divided between Bob and Chana, at least
one agent gets a piece of cake with value at most 9, so no connected strongly-proportional

allocation exists.

Example 6.2. Consider the following instance modified from Example 6.1.

Alice |9 0 0 0 9 0 0 0 0 0 9
Bob 1 4 4 \ 31 55 1 1 1 1
Chana | 1 8 \ 29 2 1 1 1 2 \ 4 4 1

The t/n-marks of the agents are identical to those in Example 6.1. However, a connected

strongly-proportional allocation exists, as the following table shows:

4The value of the cake should technically be normalized to 1, but this can be done by simply dividing
every value by 27. We use integers here and in all subsequent examples for simplicity.

82

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

Alice 9 0 0 0 9
Bob 5 5
Chana 2 4 4 1

Examples 6.1 and 6.2 show that the condition for determining the existence of a con-
nected strongly-proportional allocation cannot be extended trivially from the result for hun-
gry agents. Instead, let us discuss the extent to which the results from Section 6.3.1 can
be extended. We start with a necessary condition regarding the r-marks for » € 7. This

condition is similar to that in Theorem 6.3.2.

Proposition 6.4.1 (Necessary condition). Let an instance with n agents with equal entitle-
ments be given. If there exists a connected strongly-proportional allocation, then there exist
two distinct agents i,j € N andr € T such that the interval of r-marks of agent i is disjoint®

from the interval of r-marks of agent j.

Proof. Let a connected strongly-proportional allocation be given, and let ¢ : N — N be
the permutation such that agent o (k) receives the k-th piece from the left. Suppose by way
of contradiction that for each » € T, the intervals of r-marks of every pair of agents have
non-empty intersection. We show by backward induction that for each k € {1,...,n}, every
agent in {o(1),...,0(k)} assigns a total value of at most k/n to the leftmost k pieces.

The base case of k = n is clear—every agent assigns a value of at most n/n = 1 to the
whole cake. Suppose that the statement is true for k£ + 1 for some k € {1,...,n — 1}; we
shall prove the statement for k. Since agent o(k + 1) assigns a value of at most (k + 1)/n
to the leftmost k + 1 pieces, the left endpoint of her piece must be strictly to the left of her
interval of k/n-marks in order for her to receive a piece worth more than 1/n. Now, consider
agent o(7) for i € {1,...,k}. Since agent o(¢)’s interval of k/n-marks intersects with agent
o(k+1)’s interval of k/n-marks, the remaining cake after removing o(k + 1)’s piece is worth
at most k/n to agent o (7). This proves the inductive statement.

Now, the statement for & = 1 states that agent o(1) receives a piece worth at most 1/n.

This contradicts the assumption that the allocation is strongly-proportional. O

Next, we provide a sufficient condition for a connected strongly-proportional allocation
using intervals of r-marks for r € 7. It differs from the necessary condition of Proposi-
tion 6.4.1 in that it requires the intervals of r-marks of all agents, rather than just two, to

be pairwise disjoint.

Proposition 6.4.2 (Sufficient condition). Let an instance with n agents with equal entitle-
ments be given. If there exists v € T such that the intervals of r-marks of all agents are

pairwise disjoint, then a connected strongly-proportional allocation exists.

Proof. Let r = t/n be such that the intervals of r-marks of all the agents are pairwise disjoint.
Since these intervals of r-marks are closed and are pairwise disjoint, we can arrange them

from smallest to largest. Moreover, the gap between any two consecutive intervals of r-marks

SUnlike for pieces of cake where “disjoint” means finite intersection, we revert to the standard definition
of “disjoint” to mean empty intersection for intervals involving r-marks.

83

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

is a non-empty open interval. Let N be the set of ¢ agents whose intervals of r-marks are
the smallest, and let N2 be the remaining agents. Then, there exists a point z between the
r-marks of the agents in V1 and that of the agents in No. Note that the ¢ agents in Ny each
values the cake [0, z] more than ¢/n, and the n — ¢ agents in Ny each values the cake [z, 1]
more than (n —t)/n. We apply any connected proportional cake-cutting algorithm on each
of [0,z] on Ny and [z,1] on N3 such that every agent receives a connected piece worth more

than 1/n. This gives a connected strongly-proportional allocation.]
Propositions 6.4.1 and 6.4.2 coincide for n = 2 agents, yielding the following result.

Corollary 6.4.3. Let an instance with two agents with equal entitlements be given. Then, a
connected strongly-proportional allocation exists if and only if the intervals of 1/2-marks of

the two agents are disjoint.

The two conditions do not coincide for n > 3 agents, however. In the search for a necessary
and sufficient condition for three or more agents, one could consider weakening the condition
in Proposition 6.4.2 to require the intervals of r-marks of just two agents to be pairwise
disjoint for some r € 7. However, as one could see in Example 6.1, even when the intervals
of r-marks of Bob and Chana are disjoint for all r € 7T, there is no connected strongly-
proportional allocation. Another possibility is to require that the interval of r-marks of one
agent to be disjoint from every other agents’ intervals of r-marks for some r € 7. However,

the following example shows that this is still not correct.

Example 6.3. Consider the following instance for n = 3 agents.

|

Alice
Bob
Chana

= |

2 211
0 2 2
0 2 2

= e | W

All agents value the entire cake at 12, so the 2/3-marks are at value 8, denoted by vertical
lines. Alice’s 2/3-mark is disjoint from Bob’s and Chana’s 2/3-marks. However, no connected
strongly-proportional allocation exists. If Alice receives the leftmost piece or the rightmost
piece, then the remaining cake is worth at most 8 to both Bob and Chana, and both of
them cannot simultaneously get a piece worth more than 4 each since they have identical
valuations. If Alice receives the middle piece instead, then Bob and Chana must receive the
leftmost and the rightmost piece in some order. However, the leftmost piece must touch the
third region, the rightmost piece must touch the fourth region, and Alice’s piece is confined

to the third and fourth regions which is only worth at most 3 to her.

Examples 6.1 to 6.3 show that the existence of a connected strongly-proportional allo-
cation cannot be determined based on t/n-marks alone. This inspires us to find another
condition that characterizes the existence of a connected strongly-proportional allocation.

In Section 6.4.1, we generalize the condition from Theorem 6.3.2 for n non-hungry agents,
regardless of whether they have equal entitlements or not. We show that this condition can
be checked by an algorithm using O(n - 2™) queries. Now, the result in Theorem 6.3.6 says

that the lower bound number of queries needed for an algorithm to determine the existence

84

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

of a connected strongly-proportional allocation for n hungry agents with generic entitlements
is Q(n - 2")—we show in Section 6.4.2 that this lower bound also applies to (not necessarily

hungry) agents with equal entitlements.

6.4.1 Upper Bound

Our condition requires agents to mark pieces of cake one after another in a certain order.
We explain this operation more precisely. Let o : N — N be a permutation of agents, and
let z € C and r1,...,7, € [0,1]. The agents proceed in the order o(1),...,0(n). Agent
o(1) starts first and makes a mark at x1 = MARK,(1)(7,745(1)), the rightmost point such
that [z, 1] is worth 75(1) to her. Then, agent o(2) continues from z1, and makes a mark at
T2 = MARK,(9) (71, 74(2)), the rightmost point such that [x1, z2] is worth r,(9) to her. Each
agent o (i) repeats the same process of making a mark at z; = MARK,(;)(%i-1,74(;)) such
that [z;_1,z;] is the largest possible piece worth To(i) to her. We shall overload the definition
of MARK and define® MARK, (z,r) as the point xz, resulting from this sequential marking
process, where r = (r1,...,7,). If [;_1,1] is worth less than r,(;) to agent o (i) at any point,
then MARK,(x,r) is defined as oo. This operation is described in Algorithm 6.2. Note that

each MARK, (z,r) operation requires at most n (MARK;) queries.

Algorithm 6.2 Computing MARK, (x,r) for n agents.

1: xop <

2: fori=1,...,ndo

3: Ti < MARKJ(i) (xifl, ra(i))
4: if x; = co then return oo
5: end for

6: return x,,

Our necessary and sufficient condition for n (possibly non-hungry) agents requires us to
check whether the point MARK,(0,w) is less than 1 for some permutation o. The point
MARK, (0, w) is determined when agents go in the order as prescribed by ¢ and make their
rightmost marks worth their entitlements to each of them one after another. The idea behind
the proof is that starting from the agent who receives the rightmost piece in ¢ and going
leftwards, each agent is able to move the boundaries of her piece such that she receives a
small piece of cake with positive value e from the right and gives away a small piece of cake
with value €/2 to the agent on the left, thereby increasing the value of her piece by a positive

value €/2.

Theorem 6.4.4. Let an instance with n agents be given. Then, a connected strongly-
proportional allocation exists if and only if there exists a permutation o : N — N such
that MARK,(0,w) < 1.

Proof. (=) Suppose that a connected strongly-proportional allocation exists. Let 0 : N — N
be the permutation such that agent o (k) receives the k-th piece from the left in this allocation,

and let yo,y1,...,yn be the points such that agent o(k) receives the piece [yr_1,yx] with

5The subscript of MARK here is a permutation ¢, not an agent number.

85

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

yo = 0 and y, = 1. We shall show that MARK,(0,w) < 1. Let xg,x1,...,2, be the points
as described by Algorithm 6.2 for MARK, (0, w). We shall show by induction that xzj < yg
for all k € {1,...,n}; then, MARK,(0,w) = x,, < yn, = 1 gives the desired conclusion.

For the base case k = 1, we have x1 = MARK,(1)(0,w,(1)), so 71 is a point for which
ug(1)([0, 21]) = wy(1). Since agent o (1) receives a piece [yo, y1] = [0, y1] worth more than w, (1),
we must have x; < y;. For the inductive case, assume that zj, < y forsome k € {1,...,n—1},
and consider k + 1. We have xj11 = MARK,(j41) (Ths Wo(k+1)) < MARKG(h11) (Yks Wor(k+1))
since zp < y. Since agent o(k + 1) receives a piece [y, yx+1] worth more than w41y, we
have MARK ;(541) (k> Wo(kt1)) < Yr+1. Therefore, the result zx 41 < yx41 holds, proving the
induction statement.

(<) Suppose that there exists a permutation o : N — N such that MARK,(0,w) < 1.
Let zg, z1,...,x, be the points as described by Algorithm 6.2 for MARK, (0, w). Since z,
which is MARK, () (Tk—1, We(k)), 18 the rightmost point 2 such that [z)_1,2] is worth wgy)
to agent o(k), the piece [v)_1,yx] is worth more than w,) to agent o (k) whenever yy > xj.

We shall define the points y1,...,y, € C in the reverse order such that y; > x; for all
k € {1,...,n}. Define y, = 1 > MARK,(0,w) = z,. Next, for each k € {1,...,n — 1},
assume that ypi1 is defined such that yry1 > zpy1. Since [xg, yg4+1] is worth more than
Wq(kt1) to agent o(k + 1), it must be worth wy(z41) + €x1 to agent o(k + 1) for some
€rt1 > 0. Define yp = MARK 11y (@k, €x41/2). Then, we have y > zj. This completes the
definition of y1,...,yp.

Let yo = 29 = 0. We shall show that the allocation with the cut points at yo,...,yn
such that [yr_1,yx] is allocated to agent o (k) for k € N is strongly-proportional. Agent o(1)
receives [yo,y1] = [zo,y1] which is worth more than w1y to her. For k € {2,...,n}, since
[Tk—1, yx] is worth wy(y) + ek and [wx_1,yx—1] is worth €,/2 to agent o(k), the piece [yx—1, yx]
is worth (wg () + €x) — €x/2 > wy (i) to agent o(k). This completes the proof. O

The condition in Theorem 6.4.4 reduces to the condition in Theorem 6.3.2 for hungry
agents with equal entitlements, i.e., when w = (1/n,...,1/n). In particular, when every
agent has the same r-mark for each r € T, then each of the n marks made in the MARK, (0, w)
operation coincides at some z; € T U {1} for every permutation, and so MARK,(0,w) = 1
for all . This corresponds to the case where no connected strongly-proportional allocation
exists.

The analysis in Theorem 6.4.4 relies crucially on the fact that the MARK; queries return
the rightmost points. If the leftmost points are returned instead, then the condition does not
work—this can be seen from Example 6.1 where Chana, Alice, and Bob could (left-)mark
their respective 1/n piece of the cake one after another in this order and still have a positive-
valued cake left, but no connected strongly-proportional allocation exists as we demonstrated

in Example 6.1.

Alice 0 0 9 0 9
Bob 5 1 1 214 1
Chana |1 8 4 1

86

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

We can determine whether the condition in Theorem 6.4.4 holds by checking all permu-
tation o to see whether the point MARK, (0, w) is less than 1 for some o. Since there are n!
possible permutations of N and each MARK, operation requires at most n queries, the total
number of queries required in the algorithm is at most n - n!.

However, we can reduce the number of queries to n - 2! by dynamic programming.
Our approach is similar to the method used by Aumann et al. (2012)—in their work, they
iteratively find a value w such that there exists a connected allocation where every agent
receives at least w, while here we require every agent ¢ to receive a connected piece with
value strictly more than w;.

We now describe our algorithm. For every subset N’ C N, our algorithm caches the best
mark by obtained by the subset of agents. The best mark by is the leftmost point possible
over all permutations of the agents in N’ when the agents go in the order as prescribed by
the permutation and make their rightmost marks worth their entitlements to each of them
one after another. The algorithm aims to compute this point for every N’.

The best mark for the empty set of agents is initialized as by = 0. Thereafter, for every
k€ {1,...,n}, we assume that the best mark for every subset of k — 1 agents is calculated
earlier and cached. We now need to find by for every subset N’ C N with k agents. The last
agent to make the best mark for N’ could be any of the agents i € N’. Therefore, for each
i € N, we retrieve the best mark for N’ \ {i}, which is by (;} and has been cached earlier,
and let agent i make the rightmost mark such that the cake starting from byn 5 is worth w;
to her. By iterating through all i € N’, we find the leftmost such point and cache this point
as by. When k = n, we obtain by, which is the best MARK, (0, w) over all permutations o.
Therefore, the algorithm returns “true” if by < 1, and “false” otherwise. This implementation
reduces the number of queries by a factor of 2¢(").

This algorithm is described in Algorithm 6.3. The correctness of the algorithm relies on
the statement in Theorem 6.4.4 and the fact that by in the algorithm is less than 1 if and
only if there exists a permutation o : N — N such that MARK, (0, w) < 1.

Algorithm 6.3 Determining the existence of a connected strongly-proportional allocation
for n agents with fewer queries.

1: bg 0

2: fork=1,...,ndo

3: for each subset N’ C N with |[N'| = k do

4: by’ ¢ 00

5: for each agent i € N’ do

6: Y < MARKi(bN/\{i},wi>

7 if y <bpns then by <y > this finds the “best” by
8: end for

9: end for

10: end for

11: if by < 1 then return true else return false

Theorem 6.4.5. Algorithm 6.3 decides whether a connected strongly-proportional allocation

exists for n agents using at most n - 2"~ queries.

87

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

Proof. To show that Algorithm 6.3 is correct, it suffices to show that by in the algorithm is
less than 1 if and only if there exists a permutation o : N — N such that MARK, (0, w) < 1,
by Theorem 6.4.4.

(=) If by in the algorithm is less than 1, then by is contributed by some agent i, € N
making the rightmost w;,-mark after by (i, Let o(n) = i,. We then consider the agent
in—1 contributing the rightmost w;, ,-mark for by y;,}, and so on. Repeat the procedure
n — 1 times to obtain the identities of the agents o(n — 1),...,0(1). Then, o is the desired
permutation.

(<) Suppose there exists a permutation o : N — N such that MARK, (0, w) < 1. For each
ke{l,...,n},let Ny ={o(1),...,0(k)}, and let 7 be the mark where agents o(1),...,0(k)
make their rightmost mark worth their entitlements to each of them one after another in this
order. We prove by induction on k that by, < x7. The base case of k = 1 is clear, as the
two quantities are equal. Assume that the inequality is true for k € {1,...,n — 1}; we shall
prove the result for k£ + 1. The point by, _, is the smallest point over all permutations where
agents o(1),...,0(k+ 1) make their rightmost 1/n-mark one after another in some order. In
particular, 27, is one of these points under consideration. Therefore, we must have by, ,, <
x{_, proving the induction statement. Then, we have by = by, < zj, = MARK, (0, w) < 1.

Next, we show that the number of queries made by Algorithm 6.3 is at most n-2"~!. Let
k € {1,...,n} be given. There are (}) subsets N’ with cardinality k, and for each N, each
of the |[N'| = k agents makes a mark query. This means that k(g) queries are made. Hence,

n

the total number of queries is Y, _; k:(k) =n-2""1 by a combinatorial identity. O

6.4.2 Lower Bound

Theorem 6.3.6 provides a lower bound for hungry agents with unequal entitlements; we shall
now prove a similar lower bound for general agents with equal entitlements.

At a high level, the technique used is similar to that in the proofs of Theorems 6.3.4
and 6.3.6: we use an adversarial argument where we construct an instance with agents having
uniform valuations on the cake such that no strongly-proportional allocation exists, but tweak
the valuations slightly depending on the queries made. However, the details from the proof of
Theorem 6.3.4 cannot be used directly since the existence of a connected strongly-proportional
allocation is not solely dependent on the r-marks for » € 7 for non-hungry agents (see the
discussion at the beginning of Section 6.4), and the details from the proof of Theorem 6.3.6
cannot be used directly since Theorem 6.3.6 requires the entitlements to be generic.

Instead, we construct the following instance with n > 3 agents. The cake is divided into
2n — 1 parts. The odd parts (i.e., the 1Ist, 3rd, ..., (2n — 1)-th parts) are non-valuable
to agents 1 to n — 1, and worth 1/n each to agent n. The even parts (i.e., the 2nd, 4th,

.., (2n — 2)-th parts) are valuable to agents 1 to n — 1, and non-valuable to agent n. For
i € [n — 1], agent 4’s first n — 2 valuable parts (i.e., the 2nd, 4th, ..., (2n — 4)-th parts) are
worth a;/(n — 2) each to agent ¢ for some carefully selected a;, and the last valuable part
(i.e., the (2n — 2)-th part) is worth 1 — a; to agent i. See Figure 6.3 for an illustration.

Consider a connected strongly-proportional allocation with equal entitlements. Agent n’s

piece has to include pieces from at least two consecutive odd parts in order for her value to

88

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

Agent 1 0 ay/(n —2) 0 ay/(n —2) 0 1—a 0
Agent n—1| 0 ani/(n—2) ,d(“’t_a‘lil n—2 0 an1/(n—2)] 0 l—an1 O
Agent n 1/n 0 identical copies) 1/n 0 1/n 0 1/n
Figure 6.3: Construction of the cake used in the proof of Theorem 6.4.6.
be greater than 1/n. By a clever choice of a; for i € {1,...,n — 1}, we force these two odd

parts to be the rightmost odd parts. This leaves the remaining 2n — 4 parts for agents 1 to
n — 1. Removing all the non-valuable parts for these agents, the remaining valuable parts
of the cake are worth a; to agent i € {1,...,n — 1}. Divide all valuations and entitlements
by a; for each i € {1,...,n — 1}. Then, this is equivalent to a cake with value 1 to every
agent such that each agent’s entitlement is w; = 1/na;. If we select the a;’s carefully such
that Z:‘L:_f w; = 1 and the entitlements w,’s are generic, then we can invoke Theorem 6.3.6

to show that the lower bound number of queries is in Q(n - 2™).

Theorem 6.4.6. Any algorithm that decides whether a connected strongly-proportional allo-

cation ezists for n agents with equal entitlements requires Q(n - 2™) queries.

Proof. Let M be a sufficiently large constant (particularly, M > 2"n?), and for each i €

{1,...,n — 1}, define w} = Mj% and a; = n%u; Note that 327w} = 1.

Consider a cake with 2n — 1 parts as illustrated in Figure 6.3. We now show that the
valuations on the cake are valid. It suffices to show that for each i € {1,...,n — 1}, each of
a;/(n—2) and 1 —a; is positive. It is clear that w} is positive, which means that a; and hence

.. _on—1 i—1
a;/(n —2) are positive. We have 1 —a; = M S?M_:Q%il)”

+1 which is positive since M > 271,
These show that the valuations are valid.

We show that any algorithm that makes fewer than (n — 1)(2" 72 —n + 3) € Q(n - 2")
queries may not be able to decide whether a connected strongly-proportional allocation exists.
The proof idea is similar to that in the proofs of Theorems 6.3.4 and 6.3.6. We assume that
the answer to every query made by the algorithm is consistent with the instance where the
valuation of each agent is uniformly distributed in their valuable parts, which are the even
parts for agents ¢ € {1,...,n — 1} and the odd parts for agent n. We show that regardless of
what the algorithm outputs as its answer, there are instances which contradict the answer.

Case 1: The algorithm outputs “true”. Consider the instance where the valuation
of each agent is uniformly distributed in their valuable parts. We show that a connected
strongly-proportional allocation cannot exist in this instance.

Suppose on the contrary that a connected strongly-proportional allocation exists. Recall
that agents have equal entitlements, which means that every agent receives a piece worth
more than 1/n. Agent n’s piece has to include pieces from at least two consecutive odd parts
in order for her value to be greater than 1/n, which means that agent n’s piece has to contain
at least one of the valuable parts of agent ¢ € {1,...,n — 1} completely.

We now show that for each i € {1,...,n — 1}, we have a;/(n —2) > 1 — a;. We have
M —271n2 £ p(2nt 420 — 1)+ 1

—)= (n — 2)n(M + 211 >0,

a;

_(1

n—2

89

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

where the inequality holds because M > 2i~!n2. This shows that a;/(n — 2) > 1 — a;, which
implies that each of the left valuable parts is worth more than the rightmost valuable part
for agent i € {1,...,n—1}.

Fori e {1,...,n—1}, since a;/(n—2) > 1 —a;, no matter which valuable part(s) of agent
i is given to agent n, each of the remaining < n — 2 valuable parts is worth at most a;/(n—2)
to agent ¢. Since the valuations are uniformly distributed within each valuable part, agent i
receives more than (1/n) + (a;/(n — 2)) = (n — 2)w, of a valuable part. Therefore, agents 1

to n — 1 receive more than

n—1 n—1
Z(n—2)w§:(n—2)2w§:n—2
i=1 i=1

valuable parts in total. This is not possible, and hence, no connected strongly-proportional
allocation exists.

Case 2: The algorithm outputs “false”. We shall now show by construction that the
information provided to the algorithm is also consistent with an instance with a connected
strongly-proportional allocation, resulting in a contradiction.

Let agent n receive the rightmost two consecutive odd parts, so that agent n receives more
than 1/n. This leaves the remaining 2n —4 parts for agents 1 to n—1. Removing all the non-
valuable parts for all agents i € {1,...,n — 1}, the remaining valuable parts of the cake are
worth a; to agent ¢. Divide all valuations and entitlements by a; for each ¢ € {1,...,n—1}—
note that this does not change the existence of a connected strongly-proportional allocation.
Then, this is equivalent to a cake with value 1 to every agent in {1,...,n—1} such that agent
i’s entitlement is 1/na; = w]. Note that Z?:_f w;, = 1, so we have reduced the problem to
finding a connected strongly-proportional allocation on a modified instance with n—1 hungry
agents such that agent ¢ € {1,...,n — 1} has an entitlement of w;.

We claim that the entitlements are generic. To see this, let N1, No C {1,...,n — 1} such

that 3 ,cn, Wi = Y N, wi- Since the denominators of the w;’s are equal to each other, we

have Y iy, (M +271) = 37 v (M +271). Since M is larger than St 21 we must
have |[N1| = [Na|, which implies that >,y 211 = D ieN, 2i=1 The only way this is possible
is when N7 = Ny, which proves that the entitlements are generic.

Since the n — 1 agents are hungry in this modified instance, we can use the construction
in the proof of Theorem 6.3.6 for agents 1,...,n — 1, which shows that, with fewer than
(n — 1)2"=3 queries, the answers are consistent with the existence of a connected strongly-
proportional allocation. However, note that the marks of agent i € {1,...,n — 1} between
every a;/(n—2) part in Figure 6.3 are already known, which translate to the ¢/(n —2)-marks
fort € {1,...,n—3}. This means that a total of (n—1)(n—3) marks are known, which requires
at most the same number of queries. Therefore, with fewer than (n—1)2"3—(n—1)(n—3) €
Q(n - 2™) queries, there exists an instance consistent with the information provided by the
queries that admits a connected strongly-proportional allocation. This contradicts the output
of the algorithm. O

The upper bound from Theorem 6.4.5 and the lower bound from Theorem 6.4.6 imply

90

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

that the number of queries required to determine the existence of a connected strongly-
proportional allocation is in O(n - 2"), even for agents with equal entitlements. The same
tight bound also holds for computing such an allocation if it exists—this can be shown by
modifying Algorithm 6.3 slightly by following the details in the second half of the proof of
Theorem 6.4.4.

Theorem 6.4.7. The number of queries required to decide the existence of a connected
strongly-proportional allocation for n agents, or to compute such an allocation if it exists,

is in O(n - 2"), even for agents with equal entitlements.

6.5 Stronger than Strongly-Proportional

We have so far only considered allocations which are strongly-proportional—agents receive
pieces with value strictly more than their entitlements. Strong proportionality does not
guarantee that agents receive pieces beyond just a small crumb more than their proportional
piece. It would indeed be useful if we can guarantee that agents receive a fixed positive amount
more than their entitlements. This motivates us to consider an even stronger fairness notion:
given some fixed value z > 0, can each agent i receive a piece with value more than w; + 27

It is easy to adapt Algorithm 6.3 to this setting by replacing w; in Line 6 of the algorithm
with w; + z—this gives an upper bound number of queries to determine the existence of such

an allocation, or to compute such an allocation if it exists.

Theorem 6.5.1. Let w be any vector of entitlements. Then, for any positive constant z,
there exists an algorithm that decides whether a connected allocation exists for n agents in

which each agent i receives a piece with value more than w; + z using at most n-2"~1 queries.

We now show a matching lower bound, even for hungry agents with equal entitlements.

The proof is similar in spirit to the proof of Theorem 6.4.6.

Theorem 6.5.2. Let n be given. Then, for any positive constant z < ﬁ,

that decides whether a connected allocation exists for n hungry agents in which each agent

any algorithm

receives a piece with value more than 1/n + z requires Q(n - 2™) queries.

Proof. Let n > 3 and z € (0, m) be given. Define € such that

. 1 nz
€=min{ — — 2 :
nn—1) " n-1]J"

note that e > 0. Let M be a sufficiently large constant (to be decided later), and for
each i € {1,...,n — 1}, define w} = (n_ljg\j% and a; = I/ZZF . Note that we have
lmps oo w) = ﬁ; therefore, we choose a value M > 2" such that ﬁ —e<w, < ﬁ +e€
for all 4 € {1,...,n — 1}. Note also that 37" w] = 1.

Consider a cake with two parts—the left part and the right part. The left part is worth

a; to agent i € {1,...,n— 1} and 1 — 1/n — z to agent n. The right part is worth 1 — a; to
agent i € {1,...,n— 1} and 1/n + z to agent n. See Figure 6.4 for an illustration.

91

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

Agent 1 al 1—a
Agent n — 1 Ap_1 1—ap_1
Agent n 1-1/n—2 1/n+z

Figure 6.4: Construction of the cake used in the proof of Theorem 6.5.2.

We now show that the valuations on the cake are valid. This is clear for agent n’s valuation
since 0 < 1/n+ z < 1. It suffices to show that for i € {1,...,n — 1}, each of a; and 1 — q; is
less than 1. We have

% +z
a; = 7
w;
1
=tz
n N / 1
< — (since wj > —5 —¢€)
n—1
1 1
o+ —€
n n(n—1) : 1
< — ; (since € < A z)
n—1
1
_ n—1 €
-1
n—1 €
=1.

Now, instead of showing 1 — a; < 1, we show an even stronger statement of 1 —a; < 1/n+ z.
We have

1
1—(11': n_*_/Z
w;
1.,
<1--% (since w} < -1 +¢)
m"‘E
1+(n—1) “=+(n-1)z
1+ (n—1)e 1+ (n—1)e
1
s+ (n—-1)e—(n—1)z
1+ (n—1)e
and
1, A+0-D9G+2) 5+ -1 +2)et=
n N 14+ (n—1)e N 14+ (n—1)e)

Taking the difference between the two expressions, we have

(1—ai)_<1lz+2> < (n—1(-5 —z)e—nz

1+ (n—1)e
(n—1)e —nz , 1
<m (Slncel—ﬁ—z<1)
nz —nz .
S TT o1 (ince € < 5%

92

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

=0,

showing indeed that 1 — a; < 1/n + z. These show that the valuations are valid.

We show that any algorithm that makes fewer than (n —1)(2"3 — 1) € Q(n - 2") queries
may not be able to decide whether a connected strongly-proportional allocation exists. The
proof idea is similar to that in the proofs of Theorems 6.3.4 and 6.3.6. We assume that
the answer to every query made by the algorithm is consistent with the instance where the
valuation of each agent is uniformly distributed in each of the left and the right parts. We
show that regardless of what the algorithm outputs as its answer, there are instances which
contradict the answer.

Case 1: The algorithm outputs “true”. Consider the instance where the valuation
of each agent is uniformly distributed in each part. Note that all agents are hungry. We
show that a connected allocation in which each agent receives a piece with value more than
1/n + z cannot exist in this instance.

Suppose on the contrary that such an allocation exists. Assume first that agent n receives
the rightmost piece. Since the right part of the cake is worth 1/n+z to agent n, agent n’s piece
has to contain the whole of the right part. The remaining n — 1 agents’ pieces are contained
in the left part. For ¢ € {1,...,n — 1}, agent ¢ receives more than (1/n + z)/a; = w; of the
left part. Therefore, agents 1 to n — 1 receive more than 2?2_11 w;, = 1 of the left part in
total. This is not possible.

Therefore, some agent j € {1,...,n — 1} receives the rightmost piece. Since 1 —a; <
1/n + z, agent j’s piece has to contain the whole of the right part. The remaining n — 1
agents’ pieces are contained in the left part. For i € {1,...,n — 1} \ {j}, agent i receives
more than (1/n + z)/a; = w} of the left part. Agent n receives more than

1/n+z 1/n+z 1 nz

1
= > > wh
I —1n—2 1—1/n n-1 n-1-n-1 7"

of the left part, where the second inequality holds since e < *%.. Therefore, agents in N \ {j}

receive more than Z;:ll w; =1 of the left part in total. This is not possible, and hence, no

such allocation exists.

Case 2: The algorithm outputs “false”. We shall now show by construction that the
information provided to the algorithm is also consistent with an instance with a connected
allocation in which each agent receives a piece with value more than 1/n + z, resulting in a
contradiction.

Let agent n receive the right part of the cake, so that agent n receives a piece with value

1/n+z. While the value of this piece is not more than 1/n+z yet, we will fix this later. Divide

all valuations of the left part of the cake and entitlements by a; for each i € {1,...,n —1}—

note that this does not change the existence of such a connected allocation. Then, this is

equivalent to a cake with value 1 to every agent ¢ € {1,...,n — 1} such that agent i needs
1/n

+z n—1_ __
—— = w;. Note that Y /" w; = 1, so we

K3

to receive a piece of cake with value more than
have reduced the problem to finding a connected allocation on a modified instance with n—1

hungry agents such that agent ¢ € {1,...,n — 1} has an entitlement of wy.

93

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

We claim that the entitlements are generic. To see this, let N1, No C {1,...,n — 1} such
that D ;cn, Wi = Y N, wi- Since the denominators of the w;’s are equal to each other, we
have Y iy, (M +271) = 37\ (M +271). Since M is larger than St 21 we must
have |[N1| = [Nz, which implies that » ;. 211 = D ieN, 2i=1. The only way this is possible
is when N7 = Ny, which proves that the entitlements are generic.

Since the n — 1 agents are hungry in this modified instance, we can use the construction
in the proof of Theorem 6.3.6 for agents 1,...,n — 1, which shows that, with fewer than
(n — 1)2"=3 queries, the answers are consistent with the existence of a connected strongly-
proportional allocation. Note that the marks between the left and the right part of the cake
are known. This means that a total of n — 1 marks are known, which requires at most the
same number of queries. Therefore, with fewer than (n —1)2"73 — (n—1) € Q(n-2") queries,
there exists an instance consistent with the information provided by the queries that admits
a connected strongly-proportional allocation for agents in {1,...,n — 1}.

We now have a connected proportional allocation such that each agent in {1,...,n — 1}
receives a piece with value more than 1/n+ z and agent n receives a piece with value exactly
1/n + z. By a similar proof as that in Lemma 6.3.1, we can slightly move the boundary of
agent n’s piece such that every agent receives a piece with value more than 1/n + z. This

contradicts the output of the algorithm. O

Theorem 6.5.2 shows that no algorithm can decide whether there exists a connected alloca-
tion in which the egalitarian value is more than 1/n 4+ z—the egalitarian value is the smallest
value of an agent’s piece in an allocation. Aumann et al. (2012) proved a closely-related
result, but in a different computational model. They assume that the agents’ valuations are
piecewise-constant and given explicitly to the algorithm. In this model, they prove that it is
NP-hard to approximate the optimal egalitarian value to a factor better than 2. Specifically,
they show a reduction from an instance of the NP-hard problem 3-dimensional matching
(3DM) to a cake-cutting instance. They show that if the answer to the 3DM instance is “yes”,
then there exists an allocation where each agent gets value at least w; and if the answer is
“no”, then every allocation gives some agent value at most w/2. In their reduction, w is at
least 4/n. In contrast, we provide an unconditional exponential lower bound in the (harder)
query model. Also, our result holds for a different range of possible w = 1/n + z values.

Theorems 6.5.1 and 6.5.2 give a tight bound to the number of queries, even for hungry

agents with equal entitlements.

Theorem 6.5.3. Let n be given. Then, for any positive z < ﬁ, the number of queries
required to decide the existence of a connected allocation for n agents in which every agent
receives a piece with value more than w; + z for entitlements w, or to compute such an

allocation if it exists, is in O(n - 2™), even for hungry agents with equal entitlements.

Our results complete the picture on the query complexity of computing a connected
allocation that guarantees each agent a piece with a certain value. For n hungry agents, the
query complexity of computing a connected allocation in which each agent receives a piece
with value at least 1/n, more than 1/n, and more than 1/n + z for some small z > 0 is

O(nlogn), ©(n?), and O(n - 2") respectively, if such an allocation exists.

94

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

6.6 Pies

We now consider a pie, where the resource is modeled by a circle instead of by an interval. We
use C' = [0, 1) to represent the pie, but in contrast to the cake version, the endpoints 0 and 1
are “joined” together—they are considered the same point. Therefore, the piece [0,a] U [b, 1)
is also considered a connected piece for any a,b € C with a < b. Several papers have studied
the special properties of pie-cutting (Stromquist, 2007; Thomson, 2007; Brams et al., 2008;
Barbanel et al., 2009).

We show that the problem of deciding the existence of a connected strongly-proportional

allocation of a pie is intractable.

Theorem 6.6.1. No finite algorithm can decide the existence of a connected strongly-propor-

tional allocation of a pie, even for hungry agents with equal entitlements.

Proof. Suppose by way of contradiction that some finite algorithm decides the existence of
a connected strongly-proportional allocation of a pie for n agents with equal entitlements.
Assume that the information provided to the algorithm by eval and mark queries is consis-
tent with that where every agent’s valuation is uniformly distributed over the pie (in which
case there is no connected strongly-proportional allocation of the pie), and so the algorithm
should output “false”. However, we shall now show that the information provided to the algo-
rithm is also consistent with an instance with a connected strongly-proportional allocation.
This means that the algorithm is not able to differentiate between the two, resulting in a
contradiction.

Let P be the set of all points on the pie mentioned by the algorithm or by the queries—for
example, if an EVAL;(z, y) query is made by the algorithm, or if a MARK;(z,) query is made
by the algorithm and y is returned, then z and y are added to P. Since the algorithm is finite,
P is finite. For x € C, define z = {z,x + 1/n,...,z + (n —1)/n} C C where all numbers in
the set are modulo 1. (From now on, every point mentioned is modulo 1.) Since P is finite,
there exists a point € C such that zN P = @. Fix x. Let € € (0,1/n) be a number smaller
than the distance between any element in z and any element in P.

Construct agent 1’s valuation function such that ui([z,p]) = p—z for all p € P, uy([z,x+
1/n+¢€]) = 1/n, and its distribution between every two adjacent points in PU{x+1/n+¢€} is
uniform within the respective intervals based on these valuations—note that this construction
is valid and unique since these known r-marks (starting at the point x) are strictly increasing
in . All other n — 1 agents have valuation functions uniformly distributed over the pie.
Note that all agents are hungry. By changing the axis to start at the point z, we see that
the 1/n-mark (starting at the point =) of agent 1 is at + 1/n + € while that of the other
agents are at « + 1/n. Therefore, the 1/n-mark of agent 1 is different from that of the other
agents. By Theorem 6.3.2, there exists a connected strongly-proportional allocation starting
from the point x. This means that the algorithm is not able to differentiate between the two

instances. O]

95

Chapter 6: On Connected Strongly-Proportional Cake-Cutting

6.7 Conclusion

We have studied necessary and sufficient conditions for the existence of a connected strongly-
proportional allocation on the interval cake (Theorems 6.3.2 and 6.4.4). We have shown that
computing this condition requires ©(n - 2") queries even for agents with equal entitlements
(Theorem 6.4.7) or hungry agents with generic entitlements (Theorem 6.3.7), and ©(n?) for
hungry agents with equal entitlements (Theorem 6.3.5). The same bounds hold for the com-
putation of such an allocation if it exists. We have also shown that for connected allocations
where each agent receives a small value z more than their proportional share, the number of
queries to decide the existence of such allocations is in ©(n - 2") (Theorem 6.5.3). Finally,
we have shown that no finite algorithm can decide the existence of a connected strongly-
proportional allocation of a pie (Theorem 6.6.1).

A natural question that arose from this chapter is whether there is an algorithm that
(asymptotically) attains the lower bound in (6.1) for hungry agents with entitlements that
are neither generic nor equal.

Additionally, this chapter can be extended in the following ways:

e Chores. Chore-cutting is a variant of cake-cutting in which agents have negative val-

uations for every piece of the cake.

e Beyond the unit interval. We can consider cakes with more complex topologies, such
as graphical cakes (Bei and Suksompong, 2021), tangled cakes (Igarashi and Zwicker,
2024), and two-dimensional cakes (Segal-Halevi et al., 2017).

e Envy-freeness. It is known that, in every cake-cutting instance, a connected envy-
free allocation exists (Stromquist, 1980; Su, 1999). What conditions are necessary and
sufficient for the existence of a connected strongly-proportional allocation that is also

envy-free?

We may also consider a weaker fairness notion of proportionality instead—we give a brief

discussion in Appendix C.2.

96

Chapter 7

Approximate Envy-Freeness in
Graphical Cake Cutting

7.1 Introduction

Cake cutting refers to the classic problem of fairly allocating a divisible resource such as
land or advertising spaces—playfully modeled as a “cake’™—among agents who may have
different values for different parts of the resource (Robertson and Webb, 1998; Procaccia,
2013). The most common fairness criteria in this literature are proportionality and envy-
freeness. Proportionality demands that if there are n agents among whom the cake is divided,
then every agent should receive at least 1/n of her value for the entire cake. Envy-freeness, on
the other hand, requires that no agent would rather have another agent’s piece of cake than
her own. Early work in cake cutting established that a proportional and envy-free allocation
that assigns to each agent a connected piece of cake always exists, regardless of the number
of agents or their valuations over the cake (Dubins and Spanier, 1961; Stromquist, 1980; Su,
1999).

Although existence results such as the aforementioned guarantees indicate that a high level
of fairness can be achieved in cake cutting, they rely on a typical assumption in the literature
that the cake is represented by an interval. This representation is appropriate when the
resource corresponds to machine processing time or a single road, but becomes insufficient
when one wishes to divide more complex resources such as networks. For example, one may
wish to divide road networks, railway networks, or power cable networks among different
companies for the purpose of construction or maintenance. In light of this observation,
Bei and Suksompong (2021) introduced a more general model called graphical cake cutting,
wherein the cake can be represented by any connected graph. With a graphical cake, a
connected proportional allocation may no longer exist—see Figure 7.1 (left). Nevertheless,
these authors showed that more than half of the proportionality guarantee can be retained:
any graphical cake admits a connected allocation such that every agent receives at least
1/(2n — 1) of her entire value.

The result of Bei and Suksompong (2021) demonstrates that approximate proportion-

ality is attainable in graphical cake cutting. However, the allocation that their algorithm

97

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

Wl

Wl
Lol

Figure 7.1: (Left) A star graph with three edges of equal length. Two agents with identical
valuations distributed uniformly over the three edges cannot each receive a connected piece
worth at least 1/2 of the whole cake at the same time. (Right) A star graph with many edges
to be divided between two agents. If sharing of vertices is disallowed, then the agent who
does not receive the center vertex will be restricted to at most one edge, and will incur envy
equal to almost the value of the entire cake.

produces may lead to high envy between the agents. In particular, while each agent ¢ is
guaranteed 1/(2n — 1) of her value, it is possible that the algorithm assigns the remaining
(2n —2)/(2n — 1) of the value to another agent j from i’s perspective, so that ¢ envies j by
almost the entire value of the cake (for large n) when measured additively, and by a factor
linear in n when measured multiplicatively. Note that envy-freeness is a much more strin-
gent benchmark than proportionality—for instance, although there exists a simple protocol
for computing a connected proportional allocation of an interval cake (Dubins and Spanier,
1961), no finite protocol can compute a connected envy-free allocation of it (Stromquist,
2008), and even without the connectivity requirement, the only known envy-free protocol re-
quires an enormous number of queries (Aziz and Mackenzie, 2016). The goal of this chapter
is to investigate the existence of connected allocations of a graphical cake with low envy, as

well as to design algorithms for computing such allocations.

7.1.1 Our Results

We assume that the cake is represented by the edges of a connected graph, and each edge
can be subdivided into segments to be allocated to different agents. Each agent is to re-
ceive a connected piece, though we will also briefly explore relaxations of this constraint in
Section 7.5. The whole cake must be allocated, and each agent’s value for it is additive
and normalized to 1; the value of each agent does not need to be uniform within each edge
or across different edges. Following Bei and Suksompong (2021), we also assume that each

1 We consider both additive envy—for a € [0, 1],

vertex can be shared by multiple agents.
an allocation is a-additive-EF if no agent envies another agent by an amount of more than

a—and multiplicative envy—for a > 1, an allocation is a-FF' if no agent envies another

agent by a factor of more than a. An a-EF allocation is also (gID—additive-EF; we refer
to Proposition 2.3.1 for details.

In Section 7.3, we consider agents with (possibly) non-identical valuations. We show
that for any graph, there exists a 1/2-additive-EF allocation, and such an allocation can be
computed by iteratively allocating to each agent a share that other agents do not value too

highly. If the graph is a star, we present an algorithm that, for any e > 0, finds a (3 + ¢)-EF

"Without this assumption, one cannot obtain nontrivial envy-free guarantees—see the caption of Figure 7.1
(right) for a brief discussion.

98

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

allocation (which is therefore nearly 1/2-additive-EF as well) by allowing agents to repeatedly
relinquish their current share for a higher-value share, and allocating the remaining shares
by following certain rules. Our two algorithms generalize ideas from algorithms for the
interval cake by Goldberg et al. (2020) and Arunachaleswaran et al. (2019), respectively. We
remark here that star graphs are of particular interest in graphical cake cutting because they
constitute perhaps the most intuitive generalization of the well-studied interval cake, and
therefore provide a natural platform for attempts to extend techniques and results from the
interval-cake setting.?

Next, in Section 7.4, we demonstrate how the bounds for non-identical valuations can
be improved in the case of identical valuations; this case captures scenarios in which there
is an objective valuation among agents.®> For arbitrary graphs, we devise an algorithm that
computes a (2+¢€)-EF allocation (which is therefore nearly 1/3-additive-EF). Our algorithm is
inspired by the work of Chu et al. (2010) on partitioning edges of a graph (see Section 7.1.2),
and involves repeatedly adjusting the shares along a path from the minimum share to the
maximum share so that the shares become more balanced in value. For star graphs, we provide
a simpler algorithm that returns a 2-EF allocation using a bag-filling idea. As we discuss at
the start of Section 7.2, an approximate proportionality result of Bei and Suksompong (2021)
implies that both of our guarantees in this section are (essentially) tight.

Finally, in Section 7.5, we explore the fairness guarantees when each agent can receive
more than one connected piece. We introduce the notion of path similarity number to discuss
the relationship between connected interval cake cutting and (non-connected) graphical cake
cutting.

Our results in Sections 7.3 and 7.4 are summarized in Table 7.1. All of our algorithms
can be implemented in the standard cake-cutting model of Robertson and Webb (1998) in
time polynomial in n, the size of the graph, and, if applicable, 1/e.

‘ general graphs star graphs
non-identical valuations | 1/2-additive-EF (Thm. 7.3.1) (3 + ¢)-EF (Thm. 7.3.2)
identical valuations (2 + €)-EF (Thm. 7.4.2) 2-EF (Thm. 7.4.6)

Table 7.1: Summary of results in Sections 7.3 and 7.4.

7.1.2 Further Related Work

Cake cutting is a topic of constant interest for researchers in mathematics, economics, and
computer science alike. For an overview of its intriguing history, we refer to the books by
Brams and Taylor (1996) and Robertson and Webb (1998), as well as the book chapter by
Procaccia (2016).

The cake-cutting literature traditionally assumes that the cake is given by an interval, and

connectivity of the cake allocation is often desired in order to avoid giving agents a “union of

2Star graphs (and path graphs) are also often studied in the context of indivisible items (see Section 7.1.2).
In graphical cake cutting, all path graphs are equivalent to the classic interval cake, which is why the role of
star graphs is further highlighted.

3We discuss further motivation for investigating this case at the beginning of Section 7.4.

99

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

crumbs” (Stromquist, 1980, 2008; Su, 1999; Bei et al., 2012; Cechlarova and Pillarova, 2012;
Cechléarova et al., 2013; Aumann and Dombb, 2015; Arunachaleswaran et al., 2019; Goldberg
et al., 2020; Segal-Halevi and Suksompong, 2021, 2023; Barman and Kulkarni, 2023).* Besides
Bei and Suksompong (2021), a few authors have recently addressed the division of a graphical
cake. Igarashi and Zwicker (2024) focused on envy-freeness but made the crucial assumption
that vertices cannot be shared between agents—as discussed in the caption of Figure 7.1
(right), with their assumption, one cannot obtain nontrivial guarantees even for star graphs
and identical valuations. Deligkas et al. (2022) explored the complexity of deciding whether
an envy-free allocation exists for a given instance (and, if so, finding one), both when vertices
can and cannot be shared, but did not consider approximate envy-freeness. Elkind et al.
(2021) investigated another fairness notion called maximin share fairness in graphical cake
cutting.

Several recent papers have examined connectivity constraints in the allocation of indi-
visible items represented by vertices of a graph (Bouveret et al., 2017; Igarashi and Peters,
2019; Suksompong, 2019; Lonc and Truszczynski, 2020; Deligkas et al., 2021; Bei et al., 2022,
2024; Bilo et al., 2022; Caragiannis et al., 2022; Gahlawat and Zehavi, 2023). In particular,
Caragiannis et al. (2022) assumed that some vertices can be shared by different agents; this
assumption allowed them to circumvent the strong imbalance in the case of star graphs. A
number of authors considered the problem of dividing edges of a graph, where, unlike in
graphical cake cutting, each edge is treated as an indivisible object (Wu et al., 2007; Chu
et al., 2010, 2013).

Another line of work also combines cake cutting and graphs, but the graph represents the
acquaintance relation among agents (Abebe et al., 2017; Bei et al., 2017, 2020; Ghalme et al.,
2023; Tucker-Foltz, 2023). Despite the superficial similarity, this model is very different from

graphical cake cutting, and there are no implications between results on the two models.

7.2 Preliminaries

Refer to the preliminaries in Sections 2.1 and 2.3. We now describe other preliminaries specific
to this chapter.

Let G = (V, E) be a connected undirected graph representing the cake. Each edge e € E,
isomorphic to the interval [0, 1] of the real numbers, is denoted by e = [v1,v2] = [v2,v1] where
v1,v2 € V are the endpoints of edge e. If x1 and 2 are points on an edge, then the segment
between them is denoted by [z1,z2] or [z2,21]—we sometimes call it an interval. We shall
restrict our attention to closed intervals only.

Two intervals of a cake G are considered disjoint if their intersection is a finite set of
points. A share of a cake G is a finite union of pairwise disjoint (closed) intervals of G—
where the intervals may belong to different edges—such that it is connected, i.e., for any two
points in the share, there exists a path between the two points that only traverses the share.

As with intervals, two shares of a cake G are considered disjoint if their intersection is a finite

“While connectivity is the most frequently studied constraint in cake cutting, other constraints, such as
geometric and separation constraints, have also been explored (Suksompong, 2021).

100

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

set of points. A share is unallocated if its intersection with every agent’s share is a finite set
of points.

An instance of graphical cake cutting consists of a graph G, a set of agents IV, and their
utility functions (u;)ien.

Bei and Suksompong (2021) demonstrated that for every n > 2, there exists an instance
in which no allocation is a-proportional for any a < 2 — 1/n, even for identical valuations
and star graphs. By Proposition 2.3.1, one cannot obtain a better guarantee than 2-EF for
such instances.

We now state a useful lemma about the existence of a share that has sufficiently high

value for one agent and, at the same time, not exceedingly high value for other agents.

Lemma 7.2.1. Let H be a connected subgraph of a graphical cake, and suppose that H is
worth By to some agent in a subset N' C N. Then, for any positive 8 < By and any vertex
r of H, there exists an algorithm, running in time polynomial in n and the size of H, that
finds a partition of H into two (connected) shares such that the first share is worth at least
B to some agent in N’ and less than 23 to every agent in N', and the second share contains

the vertez r.

Bei and Suksompong (2021, Lemma 4.9) made this claim for the special case where all
agents have the same value for H and no vertex r is specified. We will use Lemma 7.2.1
as a subroutine in ITERATIVEDIVIDE (Algorithm 7.1) and BALANCEPATH (Algorithm 7.4);
ITERATIVEDIVIDE considers the case where different agents may have different values for H,
while BALANCEPATH requires the condition on the vertex r in order to maintain connectivity
along the minimum-maximum path. We shall use DIVIDE(H, N’, 8,7) to denote the ordered
pair of the two corresponding shares as described in the lemma. The idea behind the proof
of Lemma 7.2.1 is similar to that of the special case shown by Bei and Suksompong (2021):
we convert H into a tree rooted at the vertex r by removing cycles iteratively—keeping the
edges and duplicating the vertices if necessary—then traverse the tree from r until a vertex v
with a subtree of an appropriate size is reached, and finally identify some connected subgraph
of the subtree as the first share while assigning the remaining portion as the second share.

The full details, including the pseudocode, are given in Appendix D.

7.3 Possibly Non-Identical Valuations

In this section, we allow agents to have different valuations. For arbitrary graphs, we present
an algorithm that computes an approximately envy-free allocation of a graphical cake when
measured additively. For the case where the graph is a star, we give an algorithm that finds

an allocation wherein the envy is bounded by a multiplicative factor of roughly 3.

7.3.1 General Graphs

A priori, it is not even clear whether there exists a constant a < 1 independent of n such
that an a-additive-EF allocation always exists. We now describe the algorithm, ITERATIVE-
D1VIDE (Algorithm 7.1), which finds a 1/2-additive-EF allocation for arbitrary graphs and

101

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

Algorithm 7.1 ITERATIVEDIVIDE(G, N).
Input: Graph G, set of agents N = {1,...,n}.
Output: Allocation (Aj,...,A,).
Initialization: r < any vertex of G; H, + G; N’ <+ N.
1: fori=1,...,n—1do
2: Bi 1/4
if there exists i’ € N’ such that uy(H,) > (; then
(H;, H,) <+ DIVIDE(H,,, N', B;,1)
i* + any agent in N’ who values H; at least 3;
else
H,+ o
i* < any agent in N’
end if
10: Ay «— H;
11: N' « N"\ {i*}

12: end for
13: Aj < Hp, where j is the remaining agent in N’
14: return (A4;,...,A,)

non-identical valuations, using ideas similar to the algorithm by Goldberg et al. (2020) for
computing a 1/3-additive-EF allocation of an interval cake. Choose any arbitrary vertex r
of G, and start with the entire graph G and all agents in contention. If there is only one
agent remaining, allocate the remaining graph to that agent. If the remaining graph is worth
less than 8 = 1/4 to every remaining agent,” allocate an empty graph to any one of the
remaining agents and remove this agent. Otherwise, apply the algorithm DIVIDE on the
remaining graph and the remaining agents with threshold 5. Allocate the first share to any
agent who values that share at least 5, and remove this agent along with her share. Repeat
the procedure with the remaining graph until the whole graph is allocated. We claim that
the resulting allocation is indeed 1/2-additive-EF.

Theorem 7.3.1. Given an instance of graphical cake cutting, there exists an algorithm that

computes a 1/2-additive-EF allocation in time polynomial in n and the size of G.

Proof. We claim that the algorithm ITERATIVEDIVIDE (Algorithm 7.1) satisfies the condition.
It is clear that the algorithm can be implemented in polynomial time; it remains to check
that the allocation returned by the algorithm is 1/2-additive-EF. Let i € N, and let Ny C N
be the subset of agents who were allocated shares that correspond to the first share of some
Di1vIDE procedure called by ITERATIVEDIVIDE. If ¢ € Ny, then agent ¢ receives a share worth
at least 3 = 1/4 to her by Lemma 7.2.1, so every other agent receives a share worth at most
1 —1/4 = 3/4 to agent ¢, and agent i’s envy is at most 3/4 —1/4 = 1/2. Else, ¢ ¢ Ny, and
every agent in Ny receives a share worth less than 28 = 1/2 to agent i by Lemma 7.2.1, while
every agent in N \ Ny receives a share worth less than 5 = 1/4 < 1/2 to agent ¢, so agent i’s

envy is again at most 1/2. O

While an additive envy of 1/2 can be seen as high, the left example of Figure 7.1 shows that

SWhile the value of 3 is the same for all iterations here, we write §; in the pseudocode because we will
later consider a generalization in which 8 can be different for different iterations.

102

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

an envy of 1/3 is inevitable. Moreover, even for an interval cake, the (roughly) 1/4-additive
approximation of Barman and Kulkarni (2023) is the current best as far as polynomial-time
computability is concerned.

Although ITERATIVEDIVIDE guarantees that the envy between each pair of agents is
at most 1/2, it is possible that some agents receive an empty share from the algorithm.
In the remainder of this chapter, we present algorithms that find approximately envy-free
allocations up to constant multiplicative factors for star graphs as well as for agents with
identical valuations. Any such allocation ensures positive value for every agent and, by

Proposition 2.3.1, is also approximately envy-free when measured additively.

7.3.2 Star Graphs

The case of star graphs presents a natural generalization of the canonical interval cake and,
as can be seen in Figure 7.1, already highlights some of the challenges that graphical cake
cutting poses. For this class of graphs, we devise an algorithm that, for any constant € > 0,
computes a (3 + €)-EF allocation in polynomial time. The algorithm consists of four phases.
It starts with an empty partial allocation and finds a small star of “stubs” near the center
vertex (Phase 1). It then repeatedly finds an unallocated share worth slightly more than some
agent’s share, and allows that agent to relinquish her existing share for this new share—care
must be taken to ensure that other agents do not have too much value for this new share
(Phase 2). This new share could be a segment of an edge (Phase 2a) or a union of multiple
complete edges (Phase 2b). This phase is repeated until there are no more unallocated shares
suitable for agents to trade with. Finally, the unallocated shares are appended to the agents’
existing shares (Phases 3 and 4). See Figure 7.2 for an illustration of each phase. We remark
that Phases 2a and 3 of our algorithm are adapted from the algorithm of Arunachaleswaran
et al. (2019) for finding a (2 + €)-EF allocation of an interval cake.

U2 U3 V2 U3 before U2 U3
< £ &« o DT e
- L2 [xs = m R Vg Ay :AQ :A3 v H
U1 o V4 V14— A on ! ! U1 on
6 /s e As (after) | T v
¢ | | 4o
Vg Vs Ve Vs ’Jk Al “ A2 “ AS ! v Ve Vs
(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4

Figure 7.2: (a) The points zj are found, where [z, v] is worth at most € /m to every agent.
(b) The unallocated intervals (dotted lines) are the ones to be considered in Phase 2a. (c¢) The
unallocated intervals (dotted lines) are appended leftwards in vy’s direction, except for the
one containing v which is appended rightwards. (d) The remaining unallocated portion H
(bold lines) is a share connected by v.

Let G = (V, E) be a star graph centered at vertex v with m > 2 edges. Label the other
vertices vy, and the edges e = [vg,v] for k € {1,...,m}. Fix any € € (0,1).

Phase 1: Preparation. Define ¢ = . Initialize an empty partial allocation A =

€
16nm
(A1,...,A,). For each edge ey, find a point xp € [vk,v] such that the segment [z,v] is

103

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

worth at most €/m to all agents. Define e} = [vg, zx] and e} = [zg,v] for k € {1,...,m},
and let E' and E? be the sets containing all e,le’s and all ei’s, respectively. Note that E? is

worth at most € to every agent.

Phase 2: Increase agents’ shares incrementally. If there is a segment e,lc € E' such
that some unallocated interval within e}, is worth at least u;(A;) + € to some agent i, go to
Phase 2a. Otherwise, consider the segments in E! that are entirely unallocated. If the union
of these segments is worth at least u;(A;) + € to some agent i, go to Phase 2b. Otherwise,
Phase 2 ends; go to Phase 3.

e Phase 2a: Allocate a subinterval of some 6116. Pick an unallocated interval I C e}g

that is worth at least u;(A4;) + € to some agent 4, and assume without loss of generality
that it cannot be extended in either direction without overlapping an allocated share
or ei. Suppose that I = [a, b], where a is closer to vy than b is. If a = vy, find the point
z € I closest to a such that [a, z] is worth exactly u;+(A;) + €' to some agent i*, and
let Aj+ = [a, 2], i.e., agent i* relinquishes her existing share for this new share. Else,
a # vi; find the point z € I closest to b such that [z, b] is worth exactly u;+(A4;+) + € to
some agent ¢*, and let A~ = [z,b]. Repeat Phase 2.

e Phase 2b: Allocate multiple edges in E. Let K be the set of all indices k such
that the entire segment e,lg is unallocated. Initialize K = &, and add the indices from
Ky to K one by one until {e} | k € K} is worth at least u;+(A;+) + € to some agent
1*. Let A;» be the union of e; over all £ € K, i.e., agent i* relinquishes her existing

share for this new share. Note that this new share is connected by the center vertex v.

Repeat Phase 2.

Phase 3: Append unallocated subintervals within e,lg. Let N7 € N consist of all
agents who last received a subinterval of some e/,lC via Phase 2a, and No C N consist of
all agents who last received two or more complete edges in E via Phase 2b (we will show
later that, in fact, Ny U No = N). For each e,lC of which some agent from Nj is allocated
a subinterval, and for each unallocated interval I = [a,b] C e} that cannot be extended in
either direction without overlapping an allocated share or E?, where a is closer to vj than b
is, append I to the share of the agent who is allocated the point a (i.e., append towards vy’s
direction). The only time this is not possible is when a = vy, in which case we append to the

share of the agent who is allocated the point b.

Phase 4: Append H. Consider the remaining unallocated portion H of the graph. Note
that for each k € {1,...,m}, we have H Ne, = {v} or e; or e;—this means that H is
connected by the center vertex v. If No is nonempty, append H to the share of an arbitrary
agent in No. Else, if some segment ei is allocated to at least two agents, give H to the
agent who has been allocated the point z;. Otherwise, we know that every agent is allocated
exactly one segment in E'-—give H to the agent who traded her share last in Phase 2 (in

particular, Phase 2a).

104

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

We claim that this algorithm yields a (3 + €)-EF allocation. By Proposition 2.3.1, such
an allocation is roughly 1/2-additive-EF and (by taking e = 1/n) 3-proportional as well.

Theorem 7.3.2. Given an instance of graphical cake cutting consisting of a star graph with
m edges, there exists an algorithm that, for any € > 0, computes a (3 + €)-EF allocation in

time polynomial in n, m, and 1/e.

For the sake of exposition, we shall introduce notations to differentiate the partial allo-
cations at different stages of the algorithm. For an integer ¢t > 0, let P* = (P},..., P!) be
the partial allocation after ¢ iterations of Phase 2, and let P = (Py,..., P,) be the partial
allocation at the start of Phase 3 (we show in Lemma 7.3.3 that it is a valid partial alloca-
tion). For any share P, let P = UL (P Ne). The final allocation (i.e., after Phase 4) shall
be denoted A = (4y,...,A4,). We establish the approximate envy-freeness of A via a series

of intermediate results.
Lemma 7.3.3. P is a valid partial allocation, and is equal to Pt for some t < %.

Proof. To show that P is a valid partial allocation, we prove by induction that P! is a valid
partial allocation for every ¢. In particular, we check that each P! is connected, and the
agents’ shares in P! are pairwise disjoint. Clearly, the empty partial allocation, P?, is a valid
partial allocation. Now, assume that P? is a valid partial allocation; we will prove the validity
of P+, At the (t 4 1)' iteration of Phase 2, some agent i* trades her share in either Phase
2a or 2b, while all other agents’ shares remain unchanged, so we only need to check that the

share of agent ¢* is connected and disjoint from other agents’ shares.

e If agent ¢* trades her share in Phase 2a, then she receives a connected subinterval of
some e,lc; furthermore, this subinterval is disjoint from other agents’ shares since it is a

subset of some unallocated interval I = [a, b].

e If agent ¢* trades her share in Phase 2b, then she receives a collection of edges e; which
are connected by the vertex v; furthermore, for any k € {1,...,m}, if e,l§ is unallocated,
then ei is unallocated as well, so the e;’s received by agent ¢* are not allocated to any

other agent.

Hence, P*! is a valid partial allocation. This completes the induction.

In each iteration of Phase 2, some agent increases the value of her share by at least €.
Since the value of each agent’s share starts from 0 and cannot exceed 1, the total number
of increments is at most 1/¢ for each agent. As there are n agents, the total number of

iterations of Phase 2 is at most n/¢ = 16n%m/e. O
Lemma 7.3.4. Fiz any i1 € N.

e For any j € Ni, we have u;(Pj) < w;(P;) + €.

e For any j € Na, we have ul(]g]) < 2(ui(P;) + €).

Proof. We prove that the statements are true for each P! by induction on ¢. Let N} and

N4 be the sets of agents whose share in P’ was last obtained via Phase 2a and Phase 2b,

105

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

respectively. Note that NY = NJ = @, and if agent i* obtains her share via Phase 2a in the
t™h iteration of Phase 2, then N¥ = NI~'U{i*} and Ni = N.~ '\ {i*}; an analogous statement
holds if 4* obtains her share via Phase 2b. For the induction, we need to prove the following

two statements.
e For any j € N{, we have u;(P}) < u;i(P}) + ¢
e For any j € Ni, we have uz(lgjt) < 2(u;(P) + €).

The statements are clearly true for the empty partial allocation P°, as all shares have zero
value. Now, assume that the statements are true for P?; we shall prove the same for P!,
Only the share of one agent i* has changed, so we can focus on the case where either i = i*

or j = ¢*. Since the statements trivially hold for ¢ = j, we may assume that ¢ # j.

e If i =4*, then we have .:’t’;.‘/+1 = P} and u;i (P > ui(PY), so both statements hold for
t+1.

e If j =i*, then agent j trades her share in either Phase 2a or Phase 2b in the (¢ + 1)

iteration of Phase 2.

—Ifje N{H’l, then j trades in Phase 2a. By our procedure in Phase 2a, agent j’s
share is not worth more than u;(P}) + ¢ = u;(PT') + € to agent i; otherwise
agent ¢ would have gotten a strict subinterval of P;H instead. Therefore, the first

statement holds for ¢ + 1.

—1Ifj e Né“, then j trades in Phase 2b. Recall that the set K in Phase 2b was
formed by adding indices from K one by one. Let K7 be the subset of K without
the last index added. Then each of {e}, | k € K1} and {e}, | k € K \ K1} is worth
less than w;(P}) + € = u;(P/™) + € to agent i, so their union,]3;+1, is worth less

than 2(u;(P/T) + ¢) to agent i. Therefore, the second statement holds for ¢ + 1.

This completes the induction. By Lemma 7.3.3, P = P! for some ¢, and so the statements in
Lemma 7.3.4 hold. O

Lemma 7.3.5. Every agent receives a share in P worth at least ﬁ to her.

Proof. Suppose by way of contradiction that some agent ¢ receives a share worth less than

1 : r_ / 1 !
T to her. Since € < 1 and € = 5, we have u;(F;) + ¢ < — +¢ <

162m . Every part

of the graph G can be classified into one of the following three cases.

e Case 1: Within E' and within an agent’s share.
By Lemma 7.3.4, for each j, the value of ﬁj is at most 2(u;(P;) 4+ €) < g2 to agent .

(If 5 & N1 U N, then P; is empty.) As there are n agents, the union of these ﬁj’s is

5
8nm

worth at most n - () < % to agent 1.

e Case 2: Within an unallocated subinterval of some segment in E'.
For each k € {1,...,m}, if n) agents are allocated some subinterval of segment (3,1§ € FE!,
then there are at most ng + 1 unallocated subintervals on the same segment. Therefore,

altogether there are at most n + m unallocated subintervals within all the segments in

106

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

E'. Since Phase 2 terminated, each of these subintervals is worth less than wi(P)+e€ <

5
16nm

(n+m) (wim) < %, where the inequality holds because n,m > 2.

to agent 7. Therefore, the total value of these subintervals to agent 7 is less than

e Case 3: Within E2.

By definition, E? is worth at most € < %6 to agent 1.
The whole cake is thus worth less than %—i— 1% + % = 1 to agent 4, which is a contradiction. [J

Lemma 7.3.5 implies that no agent receives an empty share in P, that is, Ny U Ny = N.

With this lemma in hand, we are now ready to prove Theorem 7.3.2.

Proof of Theorem 7.53.2. Without loss of generality, we may assume that ¢ € (0,1). The
running time claim holds because each iteration of each phase runs in time polynomial in n
and m, and the number of iterations of Phase 2 is polynomial in n, m, and 1/e by Lemma 7.3.3.

Fix any i,j € N; we shall first show that A; is worth at most 3u;(P;) + 4€’ to agent i.
To this end, we consider three cases for j. Recall the definition of H from Phase 4 of the

algorithm.

e Case 1: j € N; and A; does not contain H.
By Lemma 7.3.4, we have u;(P;) < u;(P;) + €. Note that at the start of Phase 3, every
unallocated subinterval of any e} is worth less than u;(P;) + € to agent i; otherwise
Phase 2 would have continued. Since agent j is allocated at most two such subintervals,
we have u;(A;) < 3(ui(P;) + €') < 3u;(P;) + 4€'.

e Case 2: j € Ny and A; contains H.
Since j € Ni, P; is a subinterval of some e,lc. Let P; = [a,b], where a is closer to vy
than b is. We claim that in this case, unlike in Case 1, agent j receives at most one
unallocated subinterval of e,lC in Phase 3. Note that since A; contains H, no agent held
a subinterval of [b, 2] at the start of Phase 3.

— If e,lC is allocated to at least two agents during Phase 3, then some other agent
held a subinterval of [v,a] at the start of Phase 3—let such a subinterval closest
to a be [y, 2], where vy, <y < z < a. The unallocated interval [z, a] at the start of
Phase 3 (if it is nonempty) is appended to the share of the agent who held [y, 2]
at the start of Phase 3. Thus, agent j receives only the unallocated subinterval
[b, z1] of e} in Phase 3.

— If e/,lC is allocated only to agent j during Phase 3, then since A; contains H, by
the description of how H is allocated in Phase 4, agent j was the last agent who
traded her share in Phase 2, in particular, Phase 2a. This means that either e,lf
was entirely unallocated just before agent j received a share from it, or it was
allocated only to j at that point. Hence, j’s share is of the form [a, b] = [vg,b] or
[a,b] = [a,xr]. It follows that j receives only one unallocated subinterval [b, x| or

[k, a] during Phase 3.

107

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

In total, A; consists of P; (worth at most u;(P;) + € to agent ¢, by Lemma 7.3.4), at
most one unallocated subinterval of some e}, (worth at most u;(P;) + €’ to agent i, as in
Case 1), and H. Now, H is a union of the unallocated segments in E' and a subset of
E?. The unallocated segments in E' together are worth less than u;(P;) + ¢ to agent
i—otherwise Phase 2 (in particular, Phase 2b) would have continued—and any subset
of E? is worth at most € to agent i, so H is worth at most u;(P;) + 2€' to agent i. As

a consequence, A; is worth at most 3u;(P;) + 4€’ to agent 1.

e Case 3: j € No.
By Lemma 7.3.4, we have ul(ﬁj) < 2(u;i(P;) + €'). The remaining portion A; \ ﬁj is a
subset of the union of the unallocated segments in E' and the segments of E?, which is
worth at most u;(FP;) 4+ 2€¢ to agent i as detailed in the last paragraph of Case 2. This
gives u;(A;) < 3u;(P;) + 4€'.

€
16nm

ui(P;) > 1= by Lemma 7.3.5, which implies that 4¢’ < eu;(P;). It follows that

= 4dnm

In summary, we have u;(A;) < 3u;(P;) + 4€¢ in all cases. Now, ¢ = by definition and

UZ(A]) < SUZ(B) + 4¢€ < 3UZ(PZ) + GUl(Pl) = (3 + G)UZ(PZ) < (3 + E)UZ(AZ)

Since i,7 € N were arbitrarily selected, the allocation A is (3 + ¢€)-EF, as desired. O

7.4 Identical Valuations

In this section, we focus on the case where the valuation functions of all agents are identical.
While this case is uninteresting for interval cake cutting since a fully envy-free allocation can
be trivially found, it becomes highly nontrivial when graphs are involved (see, for example,
the left of Figure 7.1). Indeed, a number of works on dividing edges or vertices of a graph
can be interpreted as dealing with the identical-valuation setting (Wu et al., 2007; Chu et al.,
2010; Caragiannis et al., 2022). Moreover, this setting captures scenarios where there is an
objective measure across agents, for example, when a town wants to divide the responsibility
of maintaining its streets among contractors based on the lengths or numbers of residents on
the streets.

As we mentioned in Section 7.2, an a-EF allocation is not guaranteed to exist for any
a < 2, even with identical valuations and star graphs. We will show in this section that, for
arbitrary graphs and any e > 0, it is possible to find an allocation that is (2 + €)-EF, which
means that the approximation factor of 2 is essentially tight.

To this end, we first discuss how we can find a 4-EF allocation using a variation of the
ITERATIVEDIVIDE algorithm that we saw in Section 7.3. This 4-EF allocation will later be
used as an input to an algorithm that computes a (2 + €)-EF allocation. For star graphs, we
also describe a simpler method for computing a 2-EF allocation.

Let us denote by u the common valuation function of the agents, and define max(A) =

max;en u(A;) and min(A) = min;eny u(4;) for any allocation A = (A4;,...,4,).

108

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

7.4.1 4-EF

In ITERATIVEDIVIDE, we used the threshold 5 = 1/4 in every call to DIVIDE so as to allocate
a share worth at least 1/4 to some agent, which results in a 1/2-additive-EF allocation. Even
with identical valuations, each iteration of DIVIDE is unpredictable in the sense that the
recipient could receive a share worth anywhere between 5 and 25. If 8 is chosen to be more
than 1/(2n — 2) and the first n — 1 agents all take shares of value close to 23, then the last
agent will be left effectively empty-handed. In contrast, if £ is chosen to be at most 1/(2n—2)
and the first n — 1 agents all take shares of value only (3, then the last agent will receive a
share of value at least 1/2, which leads to an envy factor linear in n.

To resolve this problem, let us consider using an adaptive threshold that takes the values of
the previous shares into account. If the previous agents took large shares, then the threshold

[is reduced appropriately for the current agent, and vice versa. Without loss of generality,

assume that for each i € {1,. — 1}, agent i is the one who takes the first share generated
by the i*" iteration of DIVIDE. By choosing B; = 3(525 Z;;ll u(A;)) to be the threshold

for the it" iteration of DIVIDE, we claim that the resulting allocation is 4-EF.® Along the

way, we shall see that the allocation is also (2 — 1/n)-proportional.

Theorem 7.4.1. Given an instance of graphical cake cutting consisting of n agents with
identical valuations, there exists an algorithm that computes a 4-EF and (2 — 7) -proportional

allocation in time polynomial in n and the size of G.

Proof. We consider the algorithm ITERATIVEDIVIDE (Algorithm 7.1)—without loss of gen-
erality, assume that the shares are allocated to the agents in ascending order of indices, i.e.,
*=jforalli € {1,...,n—1} in the algorithm—and substitute 3; with 3 (52 —Z;;ll u(A4j))
(instead of 1/4). We claim that this algorithm satisfies the condition of the theorem. It is clear

that the running time is polynomial in n and the size of G, so it remains to check that the envy-

freeness and proportionality claims are valid. Let (Ay,...,A,) = ITERATIVEDIVIDE(G, N),
and let { = 5——. By induction, we shall prove the following statements for i € {1,...,n—1}:

(i) €<u(d)<@-270D)g

(i) (2 —2+27 071 §<Z ;) < 2i€.
j=1

For the base case i = 1, we have 81 = { < 1 = u(G), which by Lemma 7.2.1 means that
¢ <wu(Ap) < 2¢, proving the two statements together.

For the inductive step, fix ¢ € {2,...,n — 1}, and assume that the two statements hold
for ¢ — 1. We first check that the if-condition in Line 3 of ITERATIVEDIVIDE is satisfied.
To this end, we have to check that §; is positive and is at most the value of the remaining
graph 1 — 23;11 u(A;). It follows from (ii) for ¢ — 1 that Z] Yu(A;) < 2(i — 1), so the
former claim is true by 8; = (2§ — EJ 1u(Aj)) > & > 0 and the latter claim is true
by 28; + Z] 1u(A;) = 2i§ < 1. The call to DIVIDE in the following line is hence valid.
Therefore, by Lemma 7.2.1, we have 8; < u(4;) < 28;. We now prove the two inductive

statements for <.

SEven better, the allocation is actually (4 — 1/2"73)-EF, as shown in the proof of Theorem 7.4.1.

109

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

e By definition, 23; = 2i¢ — S'- i1 Lu(A j), and by the inductive hypothesis,

i—1

(20i — 1) = 24 2707)e < “u(4;) < 2(i - 1)&.

j=1
Putting these together gives 2¢ < 26; < (4 — 2-(=2)¢. Thus,
£ < Bi <u(dy) <26 < (4—270)g,
which proves (i).
e Now, subtracting 3; < u(A;) < 28; from 24; gives 0 < 23; — u(A;) < B;. Then,
i—1

u(4j) | —u(Ai) =28 —u(A);

7
218 — Y u(Ay) = | 2i -
j=1 J=1
combining this with the previous inequality yields 0 < 2§ — Z;:l u(A;) < ;. Sub-
tracting this from 2i€ gives 2i§ — 3; < Z;’:fu(Aj) < 2i¢. Finally, combining this
with the Statement from the previous bullet point that 23; < (4 — 2_(i_2))§, that is,
Bi < (2—2"0"D)¢, we get

2i¢ — (2 —2707D) §<Z) < 2i€,

which proves (ii).

This completes the induction.

By (ii) for i = n — 1, we have

(2(n—1) —2+27(=2) £<Zu) < 2(n— 1)

7j=1

Combining this with

we get £ < u(A,) < (3 —2-(2)¢. Together with (i), we see that the minimum value
across all u(A;)’s is at least & and the maximum value is at most (4 — 2-(»=3)¢. This
shows that the allocation is (4 — 27("=3))-EF, which is also 4-EF. Additionally, we have
u(A;) > €= 2n1_1 = (2_11/n)n for all 7, and so the allocation is (2 — %)—proportional. O

As mentioned in Section 7.2, an a-proportional allocation is not guaranteed to exist for
any a < 2 — 1/n, so the algorithm in Theorem 7.4.1 attains the optimal proportionality
approximation. In terms of envy-freeness, one may consider adjusting the values of (; in

ITERATIVEDIVIDE so as to obtain an allocation with a better approximation factor than 4.

110

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

While this might be possible, it seems unlikely that this approach could lead to 2-EF, given
that the guarantee from Lemma 7.2.1 already has a multiplicative gap of 2. This motivates

us to devise another algorithm that reduces the factor to arbitrarily close to 2.

7.4.2 (2+ ¢)-EF

Let us first define a minimum-mazimum path of an allocation A = (Ay,...,A,) as a list

P = (Pi,...,P;) (where d < n) satisfying the following conditions:
e For each i € {1,...,d}, P, = A;j for some j € {1,...,n},
o P # Pjforl<i<j<d,

e For each i € {1,...,d — 1}, there exists at least one point belonging to both P; and
Piy1, and

e u(P;) = min(A) and u(P;) = max(.A).

Intuitively, a minimum-maximum path is a list of shares that chains a minimum-valued one
to a maximum-valued one in the underlying graph without crossing any share more than
once. Such a list can be found in polynomial time: we locate a minimum-valued share and a
maximum-valued share of A, find a path through the graph that connects both shares, and
identify the shares corresponding to this path. If some share A; appears more than once,
we repeatedly remove the part between the two occurrences of A; (including one of these
occurrences). Let us use MINMAXPATH(A) to denote an arbitrary minimum-maximum path
of A.

We now describe the algorithm, RECURSIVEBALANCE (Algorithm 7.2), which finds a
(2 + ¢)-EF allocation for any given ¢ > 0. We employ similar ideas as the ones used by
Chu et al. (2010)—in their work, they partition the (indivisible) edges of a graph, whereas
we have to account for the divisibility of the edges. Assume without loss of generality that
e € (0,1). Given an allocation A, RECURSIVEBALANCE repeatedly replaces A with the
allocation BALANCE(A, €), then terminates when A is (2 + €)-EF. The algorithm BALANCE
(Algorithm 7.3) finds a minimum-maximum path P of A, and replaces the shares in A that
appear in P by BALANCEPATH(P, ¢). Note that the order of shares in A does not affect the

fairness properties due to the identical valuation across all agents.

Algorithm 7.2 RECURSIVEBALANCE(A, €).
Input: Allocation A = (A1,...,A4,), e € (0,1).
Output: Allocation A = (Ay,..., Ay).

. while r;?;(((ﬁ)) >2+¢edo

1

2 A < BALANCE(A, ¢)
3: end while

4: return A

Now, BALANCEPATH (Algorithm 7.4) does the bulk of the work. This algorithm adjusts
the shares in P = (P, ..., P;) so that their values meet certain criteria. Let v = u(P;) and

111

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

Algorithm 7.3 BALANCE(A,¢).
Input: Allocation A = (4y,...,4,), €
Output: Allocation A = (Ay,..., Ay).
1: P+ MINMAXPATH(A)
2: A+ (A\ P) UBALANCEPATH(P, €)
3: return A

€ (0,1).

ﬁl = P;.” For each i from 1 to d — 1, the algorithm does one of the following unless it is

terminated prematurely via Case 1 or Case 2.

e Case 1: The value of P is at least e
Set P/ = P, and Pj= Pjforall j € {i+1,...,d}. Terminate the algorithm by returning
(P{,....P)).

e Case 2: The value of]3z is less than QLJFE and the value of]3Z U P41 is less than
2y
2+e€*

Set P/ =]3Z-UP¢+1. Set P/, and P} to be the respective outputs of DIVIDE(Py, N, 3,7),
where r is any point in Py; note that this call to DIVIDE is valid because P; has value
v. Set Pj = Pj for all j € {i +2,...,d — 1}. Terminate the algorithm by returning

(Pf,....P)).

e Case 3: The value of ﬁ, is less than 2%% and the value of]3Z U Py is at least
2y
2+4€*

Consider the graph P* =]3Z U Pit1. Set P/ andﬁiﬂ to be the respective outputs of
DIVIDE(P*, N, 51,7

i = d — 1, in which case r is any point in FPy); note that this call to DIVIDE is valid

), where r is any point belonging to both P11 and P2 (unless

because P* has value at least 227:6 The choice of r ensures that, if i < d — 1, ﬁi+1 and

P; 5 share at least one point. Continue with the next ¢ by incrementing it by 1.

If the algorithm still has not terminated after i = d — 1, set P} = P, and return (Pl,...,P)).
We claim that the algorithm RECURSIVEBALANCE terminates in polynomial time if it
receives a 4-EF allocation as input (provided by Theorem 7.4.1), and upon termination the

algorithm returns a (2 + €)-EF allocation.

Theorem 7.4.2. Given an instance of graphical cake cutting consisting of n agents with
identical valuations, there exists an algorithm that, for any € > 0, computes a (2 + €)-EF

allocation in time polynomial in n, 1/€, and the size of G.

To establish the proof of Theorem 7.4.2, we will work “inside-out™ establish properties
of BALANCEPATH (Algorithm 7.4), BALANCE (Algorithm 7.3), and RECURSIVEBALANCE
(Algorithm 7.2) in this order. Throughout the proofs, we will assume that the inputs of the
algorithms are pseudo 4-FEF—the definition is given below.

For a parameter o > 1, we say that an allocation A is pseudo a-EF if min(A) > 0 and

min(A") > max(A’)/a, where A’ is defined to be an allocation after removing one share of the

"We reuse P; for P} and P in the pseudocode for simplicity; however, we differentiate them in the main
text for clarity.

112

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

Algorithm 7.4 BALANCEPATH(P, ¢).
Input: List of shares P = (Pi,...,P;), e € (0,1).
Output: List of d shares (P, ..., Py).
Initialization: v < u(Fy).

1: fori=1,...,d—1do

2: if u(P;) > 51, then

3: return (Py, ..., Py)

4: end if

5: P*+— PUP

6: if u(P*) < 22_:6 then

7 P, « P*

8: r <— any vertex in Py

9: (Pit1, Py) <~ DIVIDE (P4, N, 3,7)
10: return (Py, ..., Py)

11: end if

12: if 1 =d—1 then

13: r <— any vertex in Py

14: else

15: r <— any vertex in P11 N P40

16: end if

17: (P;, Piy1) + DIVIDE (P* N, 216,)
18: end for

19: return (P,..., Py)

lowest value in A (if there is more than one such share, the definition is independent of which
of those shares is removed). In other words, the concept of “pseudo a-EF” ignores the effect of
one share with the lowest value. We apply the analogous definition to a minimum-maximum
path P. Note that an a-EF allocation is also pseudo a-EF. For any minimum-maximum path
P of A, P is pseudo a-EF if A is, and P is a-EF if and only if A is.

First, we establish properties satisfied by the output of BALANCEPATH.

Lemma 7.4.3. Lete € (0,1), and let P = (P, ..., Py) be a minimum-maximum path of some
allocation A that is pseudo 4-EF but not (2 + €)-EF. Let v = max(P). Then, the following
statements regarding P hold:

o 0 <u(P) < 51,

o I <wu(Pj) <y foralje{2,...,d—1}, and
U(Pd):

Moreover, if P' = (P|,..., P}) is the output of BALANCEPATH(P, €), then at least one of the

following three cases holds:

e Case 1: There exists i € {2,...,d — 1} such that

e Su(P) < 7 - forall j € {1,. — 1},
— ﬁ <wu(P) < (P;), and
u(P,

) =u(Pj) forallj € {i+1,...,d}.

113

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

o Case 2: There exists i € {1,...,d — 2} such that

- 7 <u(P)<2+€f07"allj6{1 i+ 1} u{d}, and
— u(P)) =u(P) forallje{i+2,....,d-1}.

— 3 < u(P()<;%forallje{l,...,d—l}, and
0 <u(Fy) <u(Pg) =1

Proof. First, we prove the statements regarding P. If A (and hence P) is not (2 + ¢)-EF,
51 Since A (and hence P) is pseudo 4-EF,
Py must have positive value and all other P;’s must have value at least 7 and at most 7.
Finally, u(P;) = max(P) = .

Next, we prove the results related to P’. Cases 1, 2 and 3 correspond to the output of

then the smallest share, P;, has value less than

BALANCEPATH in Lines 3, 10, and 19, respectively8 For each ie{l,. — 1}, if the value
of P; is less than ﬁ and the value of P U P11 is at least then ﬁ <wu(P) < 16 by

DIVIDE(P*, N

2+5’

, 2+6, r) and Lemma 7.2.1. Hence,

~

w(Pi1) = u(P; U Py1) — u(P)) > 0,

and since u(P) < < 51 <u(P]), we have

~

w(Pia1) = w(Pia) — (u(F)) = u(P)) < u(Pis). (7.1)

Putting the two bounds on u(]3i+1) together, we get 0 < u(ﬁiﬂ) <u(Pit1) <.

If there is some smallest i € {2, ..., d—1} such that the value of P; is at least 51¢ (note that
this is not possible for ¢ = 1 since u(Pl) = u(Pl) < g7¢), then we have 57— < u(P’) < 2216 for
all j € {1,...,i—1} by Lemma 7.2.1, and 5}, < u(P;) < u(F;) by (7.1) and the definition
of i (since the two early termination conditions were not triggered for ¢ — 1 and P} = PB).
The remaining shares are unchanged, i.e., u(P) = u(P;) for all j € {i +1,...,d}. This
corresponds to Case 1.

Else, if there is some smallest ¢ € {1,...,d — 2} such that the value of ﬁz U P11 is less
than 22—16 (note that this is not possible for i = d — 1 since u(Py_1 U Py) > u(Py) = v > 2+E)

then we have
2y
2+¢

~y
2+¢

< <u(P)) <

2

for all j € {1,...,i— 1} by Lemma 7.2.1. Now, I < u(Piy1) < w(P, U Pyy) < 22—;, where
the first inequality follows from the first paragraph of this proof. Since P/ is set to P;U P41,

we have

2y
<u(P) <
- () 2+¢€

]2

8Please note the notational differences between the main text and the pseudocode. We refer to the
notations in the main text.

114

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

Also, since (P/,, P}) = DIVIDE(Py, N, %, 7), it holds that

< - <u(P)<="<

J

2
w2

for j € {i +1,d} by Lemma 7.2.1 and the fact that u(P;) = 7. The remaining shares are
unchanged, i.e., u(P;j) = u(P) for all j € {i +2,...,d —1}. This corresponds to Case 2.

Finally, suppose that the value of]32 is less than %JFE and the value of ISZ U P41 is at least
22—16 forall i € {1,...,d —1}. By Lemma 7.2.1, 77— < u(P]) < 22736 for all j € {1,...,d—1}.
Moreover, since

2y = 3 v
< u(Pygo1 UPy) <u(Py- P —
5t = vl U P < u(Pa) +ulla) < o+
and 51 <u(Py) < 22—_36, and u(P)) = u(Py_1 U Py) — u(P)_,), we have 0 < u(P)) <~y =
u(P;). This corresponds to Case 3. O

Having analyzed the output of BALANCEPATH, we next establish properties satisfied by

the output of BALANCE. For an allocation A, let Z(A) = [maX(A),maX(A)] and J(A) =

2+4€
ZHI;_’:EA) , max(A)} . Let N (A, I) be the number of shares in .4 having values in the interval

I, and let N (A) = N (A, Z(A)).

Lemma 7.4.4. Let e € (0,1), and let A= (Ay,...,A,) be an allocation that is pseudo 4-EF
but not (2 + €)-EF. Let A’ = (A}, ..., Al) be the output of BALANCE(A,€). Without loss of
generality, assume that both A and A’ have the shares arranged in ascending order of values.

Then A" is pseudo 4-EF, and at least one of the following two cases holds:

o Case (i): N(A,Z(A)) > N(A), and for all j such that u(A;) € J(A), we have
u(A}) < u(4y).

o Case (ii): For all j such that u(A}) € J(A), we have u(A}) < u(Aj-1).

Proof. Since A is pseudo 4-EF but not (2+¢€)-EF, we can apply Lemma 7.4.3 on its minimum-
maximum path denoted by P. Note that the values of the shares in A\ P remain unchanged,
while all shares in P" have values in the range [, 7], except possibly P; which has value in
the range (0,~]. This means that A’ is pseudo 4-EF.

We now show that at least one of the two cases in the lemma statement holds. First,
suppose that either P’ falls under Case 1 of Lemma 7.4.3, or P’ falls under Case 3 with
the additional condition that 51~ < u(P)) < ~. There exists i € {2,...,d} such that only
Py,...,P; are changed to P[,..., P/, while the rest of the shares remain unchanged. Let
P=(P,...,P)and P = (P,...,P]). We have u(P,) & Z(A) because A is not (2 + ¢)-EF,
so N'(P,Z(A)) < i — 1, while u(P}) € Z(A) for all j € {1,...,i}, so N(P', Z(A)) = i. As
the rest of the shares in P and A remain unchanged, this implies N (A, Z(A)) > N(A).
Furthermore, the only share in P’ with a value that is potentially in 7 (A) is P/, but since
u(P)) < u(F), we have u(A}) < u(A;) for all j such that u(A%) € J(A). This corresponds
to Case (i).

115

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

Next, suppose that either P’ falls under Case 2, or P’ falls under Case 3 with the additional
condition that 0 < u(P)) < 57. There exists i € {1,...,d — 2} such that only P1,..., Py
and Py are changed to Py, ..., P/, ; and Pj. Then we have u(P]) ¢ J(A) forall j € {1,... i+
1} U {d}. Hence, for j such that u(P}) € J(A), it holds that j € {i +2,...,d — 1} and
u(Pj) = u(P}) € J(A). Moreover, u(Fy) = max(A) € J(A). Since both A and A’ have
the shares arranged in ascending order of values and the values of the shares in A\ P
remain unchanged, it follows that u(A) < u(A;_1) for all j such that u(A}) € J(A). This

corresponds to Case (ii). O

By leveraging Lemma 7.4.4, we can bound the number of calls to BALANCE in RECUR-
SIVEBALANCE.

Lemma 7.4.5. Given an instance of graphical cake cutting consisting of n agents with iden-
tical valuations, a 4-EF allocation A of the cake, and any € € (0,1), the algorithm RECUR-
SIVEBALANCE terminates after at most @ calls to BALANCE.

Proof. Let A° = A, and A™™! = BALANCE(A?, €) for all t > 0. If there is some ¢ such that A°?
is (2 4 €)-EF, then the algorithm RECURSIVEBALANCE terminates. By Lemma 7.4.4, every
At is pseudo 4-EF, and if A’ is not (2 + €)-EF, then either Case (i) or Case (ii) holds when
A! is used as an input to BALANCE, with output A‘T!. As a consequence of Lemma 7.4.4,
we have max(A*1) < max(A?Y). For an allocation B, let us say that B follows Case (i)
(resp., Case (ii)) if the pair (B, B’) fulfills the conditions of Case (i) (resp., Case (ii)), where
B’ = BALANCE(B, ¢).

We claim that RECURSIVEBALANCE terminates if there are m consecutive allocations
following Case (i). Consider some A’ and assume that for every k& € {0,...,n — 1}, A**
follows Case (i) and is not (2 + ¢)-EF. For each k, we have

N(At+k+1,I(At+k)) > N(At+k)

by Lemma 7.4.4, and
N(AHEFL) > N (APHRFL T(AMHRY)

holds due to the fact that max(A™*+1) < max(A!*). This gives the chain
N(AD) < N(AT) <o < N(AT).

Since each N (A'**) is an integer bounded by 0 and n, the chain forces N'(A**) = k for all
k € {0,...,n}. In particular, N'(A*™) = n, which implies that A" is (2 + ¢)-EF, and the
algorithm terminates.

Let A" and k > 0 be given. For each i € {0,...,k}, consider the number of shares
the allocation A" has in the interval J(A!), ie., consider z; = N (A" J(AY)). By
Lemma 7.4.4, if A follows Case (i), then for all j such that u(A;HH) € J(A™), we have
u(Az.HH) < u(AzJ”) Note that if u(A?HH) € J(AY), then it must also be that u(A;HH) €
J (A1) because max(A?Y) > max(A™) > max(AFFL). Hence, if A follows Case (i),
then for all j such that u(A?Hl) € J(A"), we have u(A;HH) < u(Azﬂ) This implies that

116

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

2i+1 < 7 in this case. Now, consider the case where z; > 0 and A follows Case (ii). This
means that for all j such that u(A;HH) € J(A™) we have u(Aé-HH) < u(Aszl) Note
again that if u(AE.HH) € J(AY), then it must also be that u(A§+i+1) € J(A™), because
max(A’) > max(A™?) > max(ATL). Therefore, for all j such that u(A§-+i+l) e J(A),
we have u(Az-HH) < u(Aéle) Combined with the assumption that z; > 0, it follows that

241 < 7 in this case. Hence, if at least n allocations among Af, A1 ... A**=1 follow

Case (ii), then 2z, = 0 and consequently, max(A"*F) < %ﬁmax(.%lt). Similarly, if at least

gn allocations among A, A™F1, ... A™*=1 follow Case (ii) for some positive integer g, then

max(ATF) < (ﬁ)qmax(flt).

We are now ready to show that RECURSIVEBALANCE terminates after at most gn? calls
to BALANCE, where ¢ = |5/€¢]. Suppose on the contrary that the algorithm still has not ter-
minated at A9, If fewer than gn allocations among A%, Al ... ,Aq”2_1 follow Case (ii),
then by a counting argument, there must be n consecutive allocations in this sequence
that follow Case (i), and hence the algorithm would have terminated. Therefore, at least
gn allocations among A%, A, ... , A1 follow Case (ii), so by the previous paragraph,

max(A") < (ﬁ)qmax(flo). Since A° is 4-EF, we must have max(A") < ni_% (other-
1

wise, every share has value more than ;-7 and the total value of all n shares is more than
1

%H + (n—1) - 15 = 1, a contradiction). Now, the function f(z) = (1 + 2)'/* is decreasing
in (0, 00)—to see this, note that In f(z) = 2 In(1+z) = W
line through (1,In1) and (1 + x,In(1 + x)), and must be decreasing because the In function

is concave. Hence, (14 §)%/¢ = f(e/2) > f(1) = 2, and so

2—|—6 q €\ 4 € 4/6
= (1 7> >(1 7) > 22 =4,
(2 > (+2 “\'*t3) =

e 2 \1_1
which implies that (27—5) < ;. It follows that

1 4 1 2
an < — = < .
max(A)—<4> (n+3> n+3 = 2n—1

However, this means that A is 2-EF (otherwise, some share has value less than ﬁ and

the total value of all shares is less than 52—+ (n—1)- 527 = 1, a contradiction) and hence

(2 4 €)-EF. This is a contradiction since the algorithm should have terminated at .A49"°. [

, which is the slope of the

We now use Lemma 7.4.5 to establish Theorem 7.4.2.

Proof of Theorem 7.4.2. Without loss of generality, we may assume that € € (0,1). Apply
ITERATIVEDIVIDE to obtain a 4-EF allocation (Theorem 7.4.1), then apply RECURSIVE-
BALANCE on this allocation to obtain a (2 + ¢)-EF allocation. ITERATIVEDIVIDE and each
iteration of BALANCE run in time polynomial in n, 1/¢, and the size of G, and the number
of iterations of BALANCE is polynomial in n and 1/e¢ by Lemma 7.4.5. The claimed overall

running time follows. O

117

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

7.4.3 Star Graphs

Although RECURSIVEBALANCE provides a nearly 2-EF allocation, the algorithm is rather
complex and involves many steps. Moreover, it seems difficult to improve the guarantee to
exactly 2-EF via the algorithm, as the balancing of shares may be too slow and we may not
reach a 2-EF allocation in finite time.? We show next that, for the case of star graphs, it is
possible to obtain a 2-EF allocation using a simpler “bag-filling” approach.

Let G be a star graph centered at vertex v. While there exists an edge [u,v] in G with
value at least 1/n, find a point = € [u, v] such that [u, x] has value 1/n, and allocate [u, z] to
one of the agents. Remove this agent from consideration and remove the allocated segment
from G; note that GG remains a star graph. Repeat this process on the remaining graph and

agents until every edge has value less than 1/n. See Figure 7.3 for an illustration.

Figure 7.3: (Left) Segments of value 1/n each (dotted lines) are allocated to the agents. The
remaining stubs (solid lines) have value less than 1/n each. (Right) Two groups of the lowest
value are merged together repeatedly. The figure shows three final groups: one group of three
stubs on the right and two groups of one stub each on the left.

Y

At this point, we are left with a star of “stubs™—edges with value less than 1/n each—and
k € {0,...,n} agents who are not allocated any share yet. If k = 0 we are done,'” so assume
that k£ > 1. The total value of all stubs is exactly k/n, so there are more than k stubs. Make
each stub a separate “group”, then repeatedly merge two groups of the lowest value until
there are exactly k groups. Assign these k groups to the k agents; note that each group is

connected by the vertex v. We claim that the resulting allocation is 2-EF.

Theorem 7.4.6. Given an instance of graphical cake cutting consisting of a star graph with
m edges and n agents with identical valuations, there exists an algorithm that computes a

2-EF allocation in time polynomial in n and m.

Proof. The running time claim is clear.

If no agent remains after assigning segments of value 1/n (i.e., k = 0), then the allocation
is envy-free and hence 2-EF.

Assume that k& > 1. The total value of the star of stubs is k/n, so we cannot end the
process with k groups of value less than 1/n each. Therefore, at some point, a newly-merged

group has value at least 1/n. Two groups of the lowest value are always the ones selected

9For example, agents with shares of 1 unit and 2+ € units respectively may repeatedly exchange and adjust
their shares with each other (through multiple calls to Algorithm 7.4) but may never reach a multiplicative
envy factor of 2.

0There may be a star of stubs of value 0 left; in that case we append it to the last agent’s share so that
connectivity is retained.

118

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

for the merge, so the value of each newly-merged group is at least that of any previously-
merged group. Let g* be the final group formed by merging two (now extinct) groups g;
and g9, and assume without loss of generality that u(g1) < u(g2). Not only does g* have the
maximum value across all groups, but the fact that u(g*) > 1/n implies that it also has the
maximum value across all shares (including the 1/n-value segments from the initial process).
Furthermore, it follows that u(g*) < 2/n; otherwise, we would have u(g2) > 1/n, in which
case each of the k groups would have value greater than 1/n and the sum of their values
could not be exactly k/n.

We shall prove that the allocation is 2-EF. Since ¢* has the maximum value across all
shares, it suffices to prove that every agent receives a share worth at least u(g*)/2. Let
agent ¢ be given. If agent i receives some group g, then g must have value at least u(g2)
(otherwise g would have been chosen for the final merge with g; instead of g2). This means
that u(g) > (u(g1) +u(g2))/2 = u(g*)/2. Else, agent i receives a 1/n-value segment; then
the segment has value at least u(g*)/2 since u(g*) < 2/n. It follows that the allocation is
2-EF, as desired. O

7.5 Beyond One Connected Piece

In previous sections, we made the crucial assumption that each agent necessarily receives
a connected piece of the graphical cake. We now relax this assumption and explore im-
provements in envy-freeness guarantees if each agent is allowed to receive a small number
of connected pieces. As mentioned in Section 7.1.2, extensive research has been done on
(approximate) envy-free connected allocations of an interval cake; it will be interesting to
draw connections between these results and graphical cake cutting.

As an example, consider a star graph with edges ey for k € {1,...,m}. Rearrange the
edges to form a path graph with the edges e; to e, going from left to right; the farthest end
of each edge from the center vertex in the star graph is oriented towards the right on the path
graph. Note that any segment along the path graph corresponds to at most two connected
pieces in the star graph; see Figure 7.4 for an illustration.'' It follows that if a connected
a-EF (resp., a-additive-EF) allocation of an interval cake can be found in polynomial time,
then there also exists a polynomial-time algorithm that finds an a-EF (resp., a-additive-EF)
allocation of the star cake where each agent receives at most two connected pieces.

We now consider an arbitrary graph GG. Let ¢ be a bijection of the edges of G onto the
edges of a path graph with the same number of edges as GG, where the orientation of the edges
along the path can be chosen. By an abuse of notation, let ¢(G) be the corresponding path
graph. Define the path similarity number of G associated with ¢, denoted by PSN(G, ¢), as
the smallest number k such that any segment along ¢(G) corresponds to at most k connected
pieces in G. Any results pertaining to connected allocations of an interval cake!? can be

directly applied to allocations of G in which each agent receives at most PSN(G, ¢) connected

1A segment can start and end at points within an edge and span across different edges—it need not start
and end at vertices.

2For instance, Barman and Kulkarni (2023) presented a polynomial-time algorithm that computes a
(roughly) 1/4-additive-EF and 2-EF allocation of an interval cake.

119

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

€2
€1 €3
€4 €1 €2 €3 €4 es €q
€6 €5 ¢ * } i h
T Y
(a) Star graph (b) Path graph

Figure 7.4: (a) A star graph with six edges and (b) its corresponding path graph. A segment
[, y] along the path graph (double lines) corresponds to at most two connected pieces in the
star graph.

pieces.

Proposition 7.5.1. Let G be a graph and ¢ be a bijection of the edges of G onto ¢(G) with
orientation such that ¢ can be found in polynomial time. If there exists a polynomial-time
algorithm that computes a connected a-EF allocation of an interval cake, then there exists
a polynomial-time algorithm that computes an a-EF allocation of a graphical cake G where

each agent receives at most PSN(G, ¢) connected pieces. An analogous statement holds for
a-additive-EF.

To complement Proposition 7.5.1, we provide upper bounds of PSN(G, ¢) where ¢ can

be computed in polynomial time.

Theorem 7.5.2. Let G be a tree of height h. Then there exists a bijection ¢ that can be
computed in polynomial time such that PSN(G, ¢) < h + 1.

Proof. Define ¢(G) as follows: arrange the edges from left to right according to their appear-
ance in a depth-first search of GG, and orient their directions so that the farthest point of each
edge from the root vertex in G appears towards the right of the edge in ¢(G). Clearly, ¢ can
be computed in polynomial time. We claim that any segment along ¢(G) corresponds to at
most h + 1 connected pieces in G.

Let [z,y] be a segment along ¢(G), and consider its corresponding piece(s) in G—see
Figure 7.5 for an illustration. If [z, y] corresponds to a path in G, then this path is a connected
piece in G. Otherwise, as we traverse [x,y] from left to right in ¢(G), the corresponding
traversal in G will eventually return to some ancestor vertex before another branch in G
is searched; this process may be repeated. Therefore, there exists some point in [z,y] that
corresponds to a vertex v in G such that [x, y] corresponds to a subgraph of the subtree rooted
at v (for example, in Figure 7.5, v is the root of the tree G). Let z; € [z,y] be the leftmost
point that corresponds to vertex v (in Figure 7.5, only one point in [z, y] corresponds to v).
Note that 21, y] corresponds to a connected piece in G—this is because z; corresponds to the
root vertex of the subtree and a depth-first search from z; to y ensures that the subgraph is
connected.

By repeating this process on [z, z;], we can find a sequence of points z1, ...,z in [z, y]
such that [z, zx], [z, 2k—1], - - -, [22, 21], [21, y] each corresponds to a connected piece in G—
note that there are at most k£ + 1 connected pieces. Furthermore, z1,...,2; correspond to

a chain of vertices with an ancestor-descendant relationship, i.e., z; is an ancestor of z; for

120

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

€1 e2 65164165 €6 €7 €8 €9 610l€11612613€}4615
1 * —®
XTzZ3 Z2 zZ1 Yy

(a) Tree G (b) Path graph ¢(G)

Figure 7.5: (a) A tree G of height 3 and (b) its corresponding path graph ¢(G) based on a
depth-first search of G. A segment [z, y] along the path graph (double lines) corresponds to
at most four connected pieces in the tree.

i < j in the corresponding graph G. Since none of the z;’s correspond to leaf vertices, the
chain has at most h vertices, i.e., k < h. Therefore, there are at most h + 1 connected pieces

in G. O

Theorem 7.5.3. Let G be a connected graph, and let d be the diameter of a spanning tree
of G with the minimum diameter. Then there exists a bijection ¢ that can be computed in
polynomial time such that PSN(G, ¢) < [d/2] + 2.

Proof. A spanning tree T' of G with the minimum diameter, and a vertex r that minimizes its
maximum distance to any vertex in 7', can be found in polynomial time (Hassin and Tamir,
1995).13 Let T be rooted at r. We claim that the height of T is at most [d/2]. To see this, let
V1, ...,V be the children of r, and assume for contradiction that some node v is of distance
greater than [d/2] from r; without loss of generality, suppose v is a descendant of vy. If there
exists a descendant w of some node in {vs, ..., v} of distance at least [d/2] from 7, then the
path from v to w must pass through r since T is a tree, and the distance between v and w is
greater than [d/2]+ [d/2] > d, contradicting the fact that d is the diameter of T'. Therefore,
every descendant of v, ..., v must be of distance less than [d/2] from r. It follows that r
is not a node that minimizes its maximum distance to any vertex in T', because v; reduces
this quantity by one. This contradicts the definition of r. Hence, the height of T is at most
[d/2].

Now, construct the tree T” as follows: start with all vertices and edges in T' and with root
vertex r; then for each edge e = [w, v] in G\ T, add a new leaf vertex v’ as a child of w in T”,
where the edge [w, v'] in T” corresponds to the edge e in G. If v appears multiple times across
different edges in G'\ T, then a new leaf vertex is created each time. The constructed graph
T’ is a tree with corresponding edges in G, and has height at most one more than the height
of T'; furthermore, any connected piece in 7" corresponds to a connected piece in G. Let ¢’ be
the corresponding bijection of the edges from G to T'. By Theorem 7.5.2 applied to 7" with
height h < [d/2]+1, there exists a bijection ¢” that can be computed in polynomial time such
that PSN(7",¢") < [d/2] + 2. Then, we have PSN(G, ¢" 0 ¢/) < PSN(T",¢") < [d/2] + 2,
as desired. O

13

r is known as an absolute 1-center of G (Hassin and Tamir, 1995).

121

Chapter 7: Approximate Envy-Freeness in Graphical Cake Cutting

7.6 Conclusion

In this chapter, we have studied the existence and computation of approximately envy-free
allocations in graphical cake cutting. For general graphs, we devised polynomial-time algo-
rithms for computing a 1/2-additive-envy-free allocation in the case of non-identical valua-
tions and a (2+¢€)-envy-free allocation in the case of identical valuations. For star graphs, our
efficient algorithms provide a multiplicative envy factor of 3 + € for non-identical valuations
and 2 for identical valuations. Our bounds in the case of identical valuations are (essen-
tially) tight. We also explored envy-freeness guarantees when the connectivity assumption is
relaxed, through the notion of path similarity number.

An interesting question left open by this chapter is whether a connected allocation with a
constant multiplicative approximation of envy-freeness can be guaranteed for general graphs
and non-identical valuations—the techniques that we developed for star graphs (Section 7.3.2)
do not seem sufficient for answering this question. If a non-connected allocation is allowed,
then tightening the bounds for the path similarity number (Section 7.5) will reduce the num-
ber of connected pieces each agent receives to achieve the same envy-freeness approximation.
Another intriguing direction for non-connected allocations is whether we can obtain improved

envy bounds using a different approach than converting the graph into a path.

122

Bibliography

Rediet Abebe, Jon Kleinberg, and David C. Parkes. Fair division via social comparison.
In Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 281-289, 2017.

Hannaneh Akrami and Jugal Garg. Breaking the 3/4 barrier for approximate maximin
share. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 74-91, 2024.

Hannaneh Akrami, Noga Alon, Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, and
Ruta Mehta. EFX: A simpler approach and an (almost) optimal guarantee via rainbow
cycle number. In Proceedings of the 24th ACM Conference on Economics and Computation
(EC), page 61, 2023.

Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé
Moulin, Alexandros A. Voudouris, and Xiaowei Wu. Fair division of indivisible goods:

Recent progress and open questions. Artificial Intelligence, 322:103965, 2023a.

Georgios Amanatidis, Georgios Birmpas, Philip Lazos, Stefano Leonardi, and Rebecca Reif-
fenhduser. Round-robin beyond additive agents: Existence and fairness of approximate
equilibria. In Proceedings of the 24th ACM Conference on Economics and Computation
(EC), pages 67-87, 2023b.

Eshwar Ram Arunachaleswaran, Siddharth Barman, Rachitesh Kumar, and Nidhi Rathi. Fair
and efficient cake division with connected pieces. In Proceedings of the 15th Conference on
Web and Internet Economics (WINE), pages 57-70, 2019. Extended version available at
Computing Research Repository (CoRR), abs/1907.11019v4.

Yonatan Aumann and Yair Dombb. The efficiency of fair division with connected pieces.
ACM Transactions on Economics and Computation, 3(4):23:1-23:16, 2015.

Yonatan Aumann, Yair Dombb, and Avinatan Hassidim. Computing socially-efficient cake
divisions. Computing Research Repository (CoRR), abs/1205.3982, 2012.

Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol
for any number of agents. In Proceedings of the 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 416-427, 2016.

Haris Aziz, Ildiké Schlotter, and Toby Walsh. Control of fair division. In Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI), pages 67-73, 2016.

123

BIBLIOGRAPHY BIBLIOGRAPHY

Haris Aziz, Péter Bir6, Jérome Lang, Julien Lesca, and Jérome Monnot. Efficient reallocation

under additive and responsive preferences. Theoretical Computer Science, 790:1-15, 2019.

Haris Aziz, lIoannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair allocation of indi-
visible goods and chores. Autonomous Agents and Multi-Agent Systems, 36(1):3:1-3:21,
2022.

Haris Aziz, Warut Suksompong, Zhaohong Sun, and Toby Walsh. Fairness concepts for indi-
visible items with externalities. In Proceedings of the 37th AAAI Conference on Artificial
Intelligence (AAAI), pages 5472-5480, 2023.

Julius B. Barbanel. Game-theoretic algorithms for fair and strongly fair cake division with
entitlements. Colloguium Mathematicae, 69(1):59-73, 1996a.

Julius B. Barbanel. Super envy-free cake division and independence of measures. Journal of
Mathematical Analysis and Applications, 197(1):54-60, 1996b.

Julius B. Barbanel, Steven J. Brams, and Walter Stromquist. Cutting a pie is not a piece of
cake. American Mathematical Monthly, 116(6):496-514, 2009.

Siddharth Barman and Pooja Kulkarni. Approximation algorithms for envy-free cake division
with connected pieces. In Proceedings of the 50th International Colloguium on Automata,
Languages, and Programming (ICALP), pages 16:1-16:19, 2023.

Xiaohui Bei and Warut Suksompong. Dividing a graphical cake. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI), pages 5159-5166, 2021.

Xiaohui Bei, Ning Chen, Xia Hua, Biaoshuai Tao, and Endong Yang. Optimal proportional
cake cutting with connected pieces. In Proceedings of the 26th AAAI Conference on Arti-
ficial Intelligence (AAAI), pages 1263-1269, 2012.

Xiaohui Bei, Youming Qiao, and Shengyu Zhang. Networked fairness in cake cutting. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI),
pages 3632-3638, 2017.

Xiaohui Bei, Xiaoming Sun, Hao Wu, Jialin Zhang, Zhijie Zhang, and Wei Zi. Cake cutting on
graphs: A discrete and bounded proportional protocol. In Proceedings of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 21142123, 2020.

Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, and Xinhang Lu. Fair division of mixed
divisible and indivisible goods. Artificial Intelligence, 293:103436, 2021.

Xiaohui Bei, Ayumi Igarashi, Xinhang Lu, and Warut Suksompong. The price of connectivity
in fair division. SIAM Journal on Discrete Mathematics, 36(2):1156-1186, 2022.

Xiaohui Bei, Alexander Lam, Xinhang Lu, and Warut Suksompong. Welfare loss in connected
resource allocation. In Proceedings of the 33rd International Joint Conference on Artificial
Intelligence (IJCAI), pages 2660-2668, 2024.

124

BIBLIOGRAPHY BIBLIOGRAPHY

Benjamin Aram Berendsohn, Simona Boyadzhiyska, and Laszl6 Kozma. Fixed-point cycles
and approximate EFX allocations. In Proceedings of the 47th International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 17:1-17:13, 2022.

Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. On approximate envy-freeness for indi-
visible chores and mixed resources. In Proceedings of the 24th International Conference on
Approzimation Algorithms for Combinatorial Optimization Problems (APPROX), pages
1:1-1:23, 2021.

Vittorio Bilo, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero Monaco,
Dominik Peters, Cosimo Vinci, and William S. Zwicker. Almost envy-free allocations with
connected bundles. Games and Economic Behavior, 131:197-221, 2022.

Arpita Biswas and Siddharth Barman. Fair division under cardinality constraints. In Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pages
91-97, 2018.

Niclas Boehmer, Robert Bredereck, Klaus Heeger, Dusan Knop, and Junjie Luo. Multivari-
ate algorithmics for eliminating envy by donating goods. In Proceedings of the 21st In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
127-135, 2022.

Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud
Mary, Moritz Miihlenthaler, and Kunihiro Wasa. The perfect matching reconfiguration
problem. In Proceedings of the 44th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 80:1-80:14, 2019.

Sylvain Bouveret, Katarina Cechlarova, Edith Elkind, Ayumi Igarashi, and Dominik Peters.
Fair division of a graph. In Proceedings of the 26th International Joint Conference on

Artificial Intelligence (IJCAI), pages 135-141, 2017.

Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolu-
tion. Cambridge University Press, 1996.

Steven J. Brams, Michael A. Jones, and Christian Klamler. Proportional pie-cutting. Inter-
national Journal of Game Theory, 36:353-367, 2008.

Simina Branzei, Ariel D. Procaccia, and Jie Zhang. Externalities in cake cutting. In Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pages
55-61, 2013.

Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061-1103, 2011.

Eric Budish, Gérard P. Cachon, Judd B. Kessler, and Abraham Othman. Course Match: A
large-scale implementation of approximate competitive equilibrium from equal incomes for
combinatorial allocation. Operations Research, 65(2):314-336, 2017.

125

BIBLIOGRAPHY BIBLIOGRAPHY

Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. ACM Transactions
on Economics and Computation, 7(3):12:1-12:32, 2019.

Ioannis Caragiannis, Evi Micha, and Nisarg Shah. A little charity guarantees fair connected
graph partitioning. In Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI), pages 49084916, 2022.

Katarina Cechlarovi and Eva Pillarova. On the computability of equitable divisions. Discrete
Optimization, 9(4):249-257, 2012.

Katarina Cechlarova, Jozef Dobo§, and Eva Pillarova. On the existence of equitable cake
divisions. Information Sciences, 228:239-245, 2013.

Guillaume Chéze. Envy-free cake cutting: A polynomial number of queries with high proba-
bility. Computing Research Repository (CoRR), abs/2005.01982, 2020.

An-Chiang Chu, Bang Ye Wu, Hung-Lung Wang, and Kun-Mao Chao. A tight bound on
the min-ratio edge-partitioning problem of a tree. Discrete Applied Mathematics, 158(14):
1471-1478, 2010.

An-Chiang Chu, Bang Ye Wu, and Kun-Mao Chao. A linear-time algorithm for finding an
edge-partition with max-min ratio at most two. Discrete Applied Mathematics, 161(7-8):
932-943, 2013.

Logan Crew, Bhargav Narayanan, and Sophie Spirkl. Disproportionate division. Bulletin of
the London Mathematical Society, 52(5):885-890, 2020.

Agnes Cseh and Tamas Fleiner. The complexity of cake cutting with unequal shares. ACM
Transactions on Algorithms (TALG), 16(3):1-21, 2020.

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Thekla Hamm, and Sebastian Ordyniak.
The parameterized complexity of connected fair division. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 139-145, 2021.

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Thekla Hamm, and Sebastian Ordyniak.
The complexity of envy-free graph cutting. In Proceedings of the 31st International Joint
Conference on Artificial Intelligence (IJCAI), pages 237-243, 2022.

Britta Dorn, Ronald de Haan, and Ildik6 Schlotter. Obtaining a proportional allocation by
deleting items. Algorithmica, 83(5):1559-1603, 2021.

Lester E. Dubins and Edwin H. Spanier. How to cut a cake fairly. American Mathematical
Monthly, 68(1):1-17, 1961.

Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. Graphical cake cutting via maximin
share. In Proceedings of the 30th International Joint Conference on Artificial Intelligence
(IJCAI), pages 161-167, 2021.

126

BIBLIOGRAPHY BIBLIOGRAPHY

Edith Elkind, Erel Segal-Halevi, and Warut Suksompong. Mind the gap: Cake cutting with
separation. Artificial Intelligence, 313:103783, 2022.

Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):
9285296, 1984.

Rupert Freeman, Evi Micha, and Nisarg Shah. Two-sided matching meets fair division. In
Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI),
pages 203-209, 2021.

Harmender Gahlawat and Meirav Zehavi. Parameterized complexity of incomplete connected
fair division. In Proceedings of the 43rd IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 14:1-14:18, 2023.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

Ganesh Ghalme, Xin Huang, Yuka Machino, and Nidhi Rathi. A discrete and bounded
locally envy-free cake cutting protocol on trees. In Proceedings of the 19th International
Conference on Web and Internet Economics (WINE), pages 310-328, 2023.

Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and
Hadi Yami. Fair allocation of indivisible goods: Beyond additive valuations. Artificial
Intelligence, 303:103633, 2022.

Paul W. Goldberg, Alexandros Hollender, and Warut Suksompong. Contiguous cake cutting:
Hardness results and approximation algorithms. Journal of Artificial Intelligence Research,
69:109-141, 2020.

Jonathan Goldman and Ariel D. Procaccia. Spliddit: Unleashing fair division algorithms.
ACM SIGecom Ezxchanges, 13(2):41-46, 2014.

Laurent Gourveés, Julien Lesca, and Anaélle Wilczynski. Object allocation via swaps along
a social network. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI), pages 213-219, 2017.

Hao Guo, Weidong Li, and Bin Deng. A survey on fair allocation of chores. Mathematics, 11
(16), 2023.

Jiatong Han and Warut Suksompong. Fast & Fair: A collaborative platform for fair division
applications. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI),
pages 2379623798, 2024.

Refael Hassin and Arie Tamir. On the minimum diameter spanning tree problem. Information
Processing Letters, 53(2):109-111, 1995.

Ian Holyer. The NP-completeness of some edge-partition problems. SIAM Journal on Com-
puting, 10(4):713-717, 1981.

127

BIBLIOGRAPHY BIBLIOGRAPHY

Sen Huang and Mingyu Xiao. Object reachability via swaps under strict and weak preferences.
Autonomous Agents and Multi-Agent Systems, 34(2):51:1-51:33, 2020.

Halvard Hummel and Magnus Lie Hetland. Maximin shares under cardinality constraints.
In Proceedings of the 19th European Conference on Multi-Agent Systems (EUMAS), pages
188-206, 2022.

Ayumi Igarashi and Dominik Peters. Pareto-optimal allocation of indivisible goods with con-
nectivity constraints. In Proceedings of the 83rd AAAI Conference on Artificial Intelligence
(AAAI), pages 2045-2052, 2019.

Ayumi Igarashi and Tomohiko Yokoyama. Kajibuntan: A house chore division app. In
Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI), pages 16449—
16451, 2023.

Ayumi [garashi and William S. Zwicker. Fair division of graphs and of tangled cakes. Math-
ematical Programming, 203(1):931-975, 2024.

Ayumi Igarashi, Yasushi Kawase, Warut Suksompong, and Hanna Sumita. Fair division
with two-sided preferences. In Proceedings of the 32nd International Joint Conference on
Artificial Intelligence (IJCAI), pages 2756-2764, 2023.

Ayumi Igarashi, Naoyuki Kamiyama, Warut Suksompong, and Sheung Man Yuen. Reacha-
bility of fair allocations via sequential exchanges. Algorithmica, 86(12):3653-3683, 2024.

Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054-1065, 2011.

Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi,
Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki. Reforming an envy-free matching. In
Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI), pages 5084
5091, 2022.

Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Yuta Nozaki,
Yoshio Okamoto, and Kenta Ozeki. On reachable assignments under dichotomous pref-
erences. Theoretical Computer Science, 979:114196, 2023.

Zsuzsanna Jank6 and Attila Jo6. Cutting a cake for infinitely many guests. The Electronic
Journal of Combinatorics, 29, 2022.

Zsuzsanna Janko, Attila Joo, Erel Segal-Halevi, and Sheung Man Yuen. On connected
strongly-proportional cake-cutting. In Proceedings of the 27th European Conference on
Artificial Intelligence (ECAI), pages 3356-3363, 2024.

Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniél Paulusma. Find-
ing shortest paths between graph colourings. Algorithmica, 75(2):295-321, 2016.

128

BIBLIOGRAPHY BIBLIOGRAPHY

David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing ap-
proximate maximin shares. Journal of the ACM, 64(2):8:1-8:27, 2018.

Fu Li, C. Gregory Plaxton, and Vaibhav B. Sinha. Object allocation over a network of objects:
Mobile agents with strict preferences. In Proceedings of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 15781580, 2021.

Richard Jay Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approxi-
mately fair allocations of indivisible goods. In Proceedings of the 5th ACM Conference on
FElectronic Commerce (EC), pages 125-131, 2004.

Shengxin Liu, Xinhang Lu, Mashbat Suzuki, and Toby Walsh. Mixed fair division: A survey.
Proceedings of the AAAI Conference on Artificial Intelligence, 38(20):22641-22649, 2024.

Zbigniew Lonc and Miroslaw Truszczynski. Maximin share allocations on cycles. Journal of
Artificial Intelligence Research, 69:613-655, 2020.

Pasin Manurangsi and Warut Suksompong. Differentially private fair division. In Proceedings

of the 37th AAAI Conference on Artificial Intelligence (AAAI), pages 5814-5822, 2023.

Carl Menger. Principles of Economics. Ludwig von Mises Institute, 1871. ISBN
9781610163606.

Hervé Moulin. Fair Division and Collective Welfare. MIT Press, 2003.

Hervé Moulin. Fair division in the internet age. Annual Review of Economics, 11:407-441,
2019.

Luis Miiller and Matthias Bentert. On reachable assignments in cycles. In Proceedings of
the 7th International Conference on Algorithmic Decision Theory (ADT), pages 273-288,
2021.

Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52:1-52:25, 2018.

Svetlana Obraztsova, Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. On swap-distance
geometry of voting rules. In Proceedings of the 12th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 383-390, 2013.

Svetlana Obraztsova, Edith Elkind, and Piotr Faliszewski. On swap convexity of voting
rules. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), pages
1910-1917, 2020.

Hoon Oh, Ariel D. Procaccia, and Warut Suksompong. Fairly allocating many goods with
few queries. SIAM Journal on Discrete Mathematics, 35(2):788-813, 2021.

Benjamin Plaut and Tim Roughgarden. Communication complexity of discrete fair division.
SIAM Journal on Computing, 49(1):206-243, 2020.

Ariel D. Procaccia. Cake cutting: Not just child’s play. Communications of the ACM, 56(7):
78-87, 2013.

129

BIBLIOGRAPHY BIBLIOGRAPHY

Ariel D. Procaccia. Cake cutting algorithms. In Felix Brandt, Vincent Conitzer, Ulle Endriss,
Jérome Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice,
chapter 13, pages 311-329. Cambridge University Press, 2016.

Kenneth Rebman. How to get (at least) a fair share of the cake. Mathematical Plums (Edited
by R. Honsberger), The Mathematical Association of America, pages 22-37, 1979.

Jack Robertson and William Webb. Cake-Cutting Algorithms: Be Fair if You Can. Pe-
ters/CRC Press, 1998.

Walter John Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177-192, 1970.

Erel Segal-Halevi. Cake-cutting with different entitlements: How many cuts are needed?
Journal of Mathematical Analysis and Applications, 480(1):123382, 2019.

Erel Segal-Halevi. Redividing the cake. Autonomous Agents and Multi-Agent Systems, 36(1):
14:1-14:36, 2022.

Erel Segal-Halevi and Warut Suksompong. How to cut a cake fairly: A generalization to
groups. American Mathematical Monthly, 128(1):79-83, 2021.

Erel Segal-Halevi and Warut Suksompong. Cutting a cake fairly for groups revisited. Amer-
ican Mathematical Monthly, 130(3):203-213, 2023.

Erel Segal-Halevi, Shmuel Nitzan, Avinatan Hassidim, and Yonatan Aumann. Fair and
square: Cake-cutting in two dimensions. Journal of Mathematical Economics, 70:1-28,
2017.

Hila Shoshan, Noam Hazon, and Erel Segal-Halevi. Efficient nearly-fair division with capacity
constraints. In Proceedings of the 22nd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 206-214, 2023.

Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101-104, 1948.

Walter Stromquist. How to cut a cake fairly. American Mathematical Monthly, 87(8):640-644,
1980.

Walter Stromquist. A pie that can’t be cut fairly (revised for DSP). In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2007.

Walter Stromquist. Envy-free cake divisions cannot be found by finite protocols. The Elec-
tronic Journal of Combinatorics, 15:#4#R11, 2008.

Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. American Mathemat-
ical Monthly, 106(10):930-942, 1999.

Warut Suksompong. Fairly allocating contiguous blocks of indivisible items. Discrete Applied
Mathematics, 260:227-236, 2019.

130

BIBLIOGRAPHY BIBLIOGRAPHY

Warut Suksompong. Constraints in fair division. ACM SIGecom FEzxzchanges, 19(2):46-61,
2021.

Warut Suksompong. A characterization of maximum Nash welfare for indivisible goods.
Economics Letters, 222:110956, 2023.

William Thomson. Children crying at birthday parties. Why? Economic Theory, 31(3):
501-521, 2007.

William Thomson. Introduction to the theory of fair allocation. In Felix Brandt, Vincent
Conitzer, Ulle Endriss, Jérome Lang, and Ariel D. Procaccia, editors, Handbook of Com-

putational Social Choice, chapter 11, pages 261-283. Cambridge University Press, 2016.

Jamie Tucker-Foltz. Thou shalt covet the average of thy neighbors’ cakes. Information
Processing Letters, 180:106341, 2023.

Staal A. Vinterbo. A note on the hardness of the k-ambiguity problem. Technical Report
DSG-TR~2002-006, Decision Systems Group/Harvard Medical School, May 2002.

Toby Walsh. Fair division: The computer scientist’s perspective. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI), pages 4966-4972, 2020.

William A. Webb. An algorithm for super envy-free cake division. Journal of Mathematical
Analysis and Applications, 239(1):175-179, 1999.

Gerhard J. Woeginger and Jifi Sgall. On the complexity of cake cutting. Discrete Optimiza-
tion, 4(2):213-220, 2007.

Douglas R. Woodall. A note on the cake-division problem. Journal of Combinatorial Theory,
Series A, 42(2):300-301, 1986.

Bang Ye Wu, Hung-Lung Wang, Shih Ta Kuan, and Kun-Mao Chao. On the uniform edge-
partition of a tree. Discrete Applied Mathematics, 155(10):1213-1223, 2007.

Xiaowei Wu, Bo Li, and Jiarui Gan. Budget-feasible maximum Nash social welfare allocation
is almost envy-free. In Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI), pages 465-471, 2021.

Sheung Man Yuen and Warut Suksompong. Extending the characterization of maximum
Nash welfare. Economics Letters, 224:111030, 2023.

Sheung Man Yuen and Warut Suksompong. Approximate envy-freeness in graphical cake
cutting. Discrete Applied Mathematics, 357:112-131, 2024.

Sheung Man Yuen, Ayumi [garashi, Naoyuki Kamiyama, and Warut Suksompong. Reforming

an unfair allocation by exchanging goods. Under submission, 2024.

131

Appendix A

NP-Hardness of Directed Triangle
Partition in Chapter 4

We prove Lemma 4.4.2 by reducing the well-known NP-hard problem 3SAT to DIRECTED
TRIANGLE PARTITION.

e 3SAT. Given a set of variables Y = {y1,...,y,} and a set of clauses C' = {c1,..., ¢}
where each clause is a disjunction of three literals, i.e., ¢; = £;1 V £j2 V ¢; 3, and each
literal is either a variable (i.e., ¢;, = y;) or its negation (i.e., £;; = ¥;), determine
whether there exists an assignment to the variables in Y such that every clause in C' is
satisfied.

e DIRECTED TRIANGLE PARTITION. Given a directed graph G = (V,E) with no
directed cycles of length 1 or 2, determine whether there is a partition of the edges into

triangles (i.e., directed cycles of length 3).

The reduction works by constructing a graph for each variable and each literal that can
be edge-partitioned into triangles in exactly two ways—one representing “true” and the other
representing “false”—and joining these graphs together in special ways to restrict the truth
values that they represent. This idea is similar to that used by Holyer (1981) in his proof of
the corresponding result for undirected graphs.

Define the directed graph H), = (V},, E,) for each positive integer p as follows:

‘/p = {(a17a27a3) S Zg | al -+ a2+a3 = 0}7
E, = {(a1,a2,a3) — (b1,b2,b3) | 3(i, 5, k) € {(1,2,3),(2,3,1),(3,1,2)} such that
bi =a;, bj =a;+1, and by = ai, — 1},

where all equivalences are modulo p. There are only two types of triangles in H,: T-triangles
of the form (a1,a9,a3) — (a1 + 1,a2 — 1,a3) — (a1 + 1,a2,a3 — 1) — (a1, a2,a3), and F-
triangles of the form (a1,as,a3) — (a1 + 1,a2 — 1,a3) — (a1,a2 — 1,a3 + 1) — (a1, a2, a3).
See Figure A.1 for an illustration. Note that each vertex has an indegree and an outdegree
of 3.

Two triangles are called neighbors if they share a common edge. A patch is a triangle

132

Appendix A: NP-Hardness of Directed Triangle Partition in Chapter 4

(0,0,0) (1,3,0) (2,2,0) (3,1,0) (0%0,0)

<

(0,0,0) (1,3,0) (2,2,0) (3,1,0) (0,0,0)

(b) A T-triangle (top) and an
(a) The graph Hy. The opposite sides wrap around. F-triangle (bottom).

Figure A.1: The graph H, and an example of a T-triangle and an F-triangle.

together with its neighbors. The set of edges of the triangle is called the center of the patch,
and the set of edges of a patch that do not belong to the center is called the exterior of
the patch. A T-patch (resp., F-patch) is a patch in which the center is a T-triangle (resp.,
F-triangle). See Figure A.2 for an illustration. Two patches P! and P? are non-interfering if
the distance between any vertex in P! and any vertex in P2 is at least (say) 10 on H,, where
distance is measured along a shortest path. We shall also require patches to be of distance
at least 10 from the vertex 0 = (0,0, 0).

(a) A T-patch. (b) An F-patch.

Figure A.2: A T-patch and an F-patch. The center T-triangle and F-triangle are denoted
by bold lines, and the exteriors are denoted by non-bold solid lines. The dotted lines are not
part of the patches.

Consider the graph H,, with non-interfering patches and with some edges of the patches
removed. Suppose there is an edge-partition of the resulting graph into triangles. The vertex
0 has an indegree and an outdegree of 3, so any edge-partition into triangles requires 0 to
belong to exactly three triangles. The only ways to have these three triangles are when they
are all T-triangles or all F-triangles. Then, all neighboring vertices to 0 belong to triangles of
the same type. By a similar argument, the neighboring vertices must each belong to exactly
three triangles of the same type. This cascades through the whole graph (except possibly
at the patches), and therefore, we see that an edge-partition of H) into triangles necessarily
consists only of T-triangles or only of F-triangles (except possibly at the patches).

Let H;, Hg, and HS be three copies of H,,, and let P}? be an F-patch on H]f for each

133

Appendix A: NP-Hardness of Directed Triangle Partition in Chapter 4

k € {1,2,3}. We say that we apply an F-F-F join on (H;, Hg, HS) if we remove the patches
P}, P%, and Pg on the respective copies and replace them by one copy of the vertices of an
F-patch Pr and one copy of the exterior of Pr. See Figure A.3 for an illustration. We claim
that any edge-partition of this new graph into triangles results in ezactly one of HI}, Hg,
and H;’ being partitioned into F-triangles (and the other two into T-triangles). To see this,
consider an edge x = a — b belonging to the exterior of Pr. Since x belongs to a triangle,
we consider the candidates for the third vertex of the triangle. There are only three such

candidates: vi, vo, and vg, which are parallel vertices on H;, Hg, and HS, respectively.

Figure A.3: An F-F-F join on H} (solid lines), H? (dashed lines) and H} (dotted lines). All
three graphs share the exterior of the patch Pr (bold lines).

Assume without loss of generality that the triangle is a — b — v; — a (note that this
is an F-triangle), and consider the triangles containing the vertex vi. Since v; already has
an F-triangle, the other triangles containing v; can only be F-triangles, and the cascading
effect implies that 0 in HI}, and all other vertices in H; (except possibly at Pr), belong to
F-triangles. Note that this implies that each edge in the exterior of Pr is combined with
edges in H; to form F-triangles. On the other hand, the indegree and the outdegree of both
vy and vs are 3, so there must be exactly three triangles containing vy and vj, respectively.
Since x is used by the edges b — v; and vi — a in H;, it cannot be used by the edges
b — vo and vo9 — a in Hg orb—vsand v3 -+ ain Hg’ to form the respective F-triangles.
As such, the triangles containing vo and v3 must all be T-triangles, and the cascading effect
implies that 0 in Hf, and H;’, and all other vertices in Hg and H;’ (except at Pr), belong to
T-triangles. It can be verified that these edge-partitions into triangles are indeed valid.

Let HI} and Hg be two copies of Hy,, and let Plfi be an F-patch on H;f for each k € {1,2}.
We say that we apply an F-F join on (H;, Hg) if we remove the patches P} and P[% on the
respective copies and replace them by one copy of an F-patch Pr (note that this construction
is slightly different from the F-F-F join, as the center of the patch is also included here). See
Figure A.4(a) for an illustration. We claim that any edge-partition of this new graph into

triangles results in at least one of H; and Hg being partitioned into T-triangles. Similar to

134

Appendix A: NP-Hardness of Directed Triangle Partition in Chapter 4

the proof for the F-F-F join, consider an edge x = a — b belonging to the exterior of Pg.
There are now three possible candidates for the third vertex of the triangle containing x: v,
va, and ¢, where v and vy are parallel vertices on H; and Hg, respectively, and c is a vertex
in the center of Pp. If the third vertex of the triangle is vq or vs, then the same proof for
the F-F-F join can be used to conclude that exactly one of H; and Hg is partitioned into
T-triangles. Otherwise, the third vertex is c. In this case, the other edges in the center of the
F-patch can only belong to T-triangles, which implies that both H; and Hg can also only be
partitioned into T-triangles. This shows that at least one of H; and Hg is partitioned into

T-triangles. It can be verified that these edge-partitions into triangles are indeed valid.

(a) An F-F join.

d f a b
Z@i E{;Z
f a b d

Py Py

(b) An F-T join.

Figure A.4: (a) An F-F join on H, (solid lines) and Hg (dashed lines). Both graphs share
the patch P (bold lines). (b) The association of vertices between Pt and P2 in an F-T join
on H; and Hg—note the labelling of vertices.

Let H; and Hg be two copies of Hj, and let P}; be an F'-patch on H; and P:% be a
T-patch on Hg. We say that we apply an F-T join on (H;, Hg) if we remove the patches
Pflp and Pr_% on the respective copies and replace them by one copy of an F-patch Pr—here,
the replacement of P2 by Pr is “mirrored”. See Figure A.4(b) for an illustration, where the
mirroring is across the edge e — c¢. We claim that any edge-partition of this new graph
into triangles results in H]}, being partitioned into T-triangles or Hg being partitioned into
F-triangles (or both). The proof is similar to that of the F-F join, except that we reverse

the argument regarding Hg due to the “mirror” effect on P%.

135

Appendix A: NP-Hardness of Directed Triangle Partition in Chapter 4

We are now ready to prove our result.
Lemma 4.4.2. DIRECTED TRIANGLE PARTITION is NP-hard.

Proof. We shall reduce 3SAT to DIRECTED TRIANGLE PARTITION. Recall that in an in-
stance of 3SAT, we are given a set of variables Y = {y1,...,y,} and a set of clauses
C ={c1,...,c } where each clause is a disjunction of three literals, i.e., ¢; = €1V ;2 V {;3,
and each literal is either a variable (i.e., ¢;; = y;) or its negation (i.e., {1 = ;).

Choose p large enough so that there are at least 3r T-patches and 3r F-patches in H),
that are pairwise non-interfering (say, p = 100r). Assign to each variable y; a separate copy
of the graph Y; isomorphic to H),, and assign to each literal /; a separate copy of the graph
L; i isomorphic to Hy,. For each j, apply an F-F-F join on (L;1, L;j2, L;j3) via any F-patch
in L;. For each (j,k), if the literal ¢, corresponds to the variable y;, apply an F-F' join
on (Ljy,Y;) via any unused F-patches, and if the literal ¢;, corresponds to 7;, apply an F-T
join on (L, Y;) via any unused F-patch and T-patch.

Let G = (V, E) denote the constructed graph. This construction can be done in time
polynomial in the size of the 3SAT instance. Note that G is a directed graph with no cycles
of length 1 or 2. We claim that there exists a satisfying assignment in the 3SAT instance if
and only if G can be edge-partitioned into triangles.

Suppose that there exists a partition of the edges of G into triangles. Consider one such
partition, and assign y; as true if and only if Y; is partitioned into 7T-triangles. For each j,
note that L, is partitioned into F-triangles for some k € {1,2,3} due to the F-F-F join—
we claim that the corresponding literal £;y is satisfied. If £;; = y; for some 4, then Y; must
be partitioned into T-triangles by the F-F' join on (L;,Y;), which means that ¢;; = v; is
true. If £; = ; for some 7, then Y; must be partitioned into F-triangles by the F-T" join on
(Ljk,Yi), which means that y; is false and ¢;, = 7; is true. In both cases, we see that the
literal £}, is satisfied.

Conversely, suppose there exists a satisfying assignment in the 3SAT instance, and con-
sider any satisfying assignment. For each i, if y; is true, partition Y; into 7T-triangles; else,
partition Y; into F-triangles. For each j, at least one of the literals in ¢; is true; pick any
one of them, say /;, and partition L, into F-triangles, and partition the other two L ;s
into T-triangles. We now verify that the edge-partition is a valid partition by checking that
the restrictions caused by the joins are not violated. For each j, consider the F-F-F join on
(Lj1,Lj2, Lj3g)—since one Lj} is edge-partitioned into F-triangles and the other two into
T-triangles, the requirement on the F-F-F join is satisfied. Now, for each (j, k), if the literal
¢; 1, corresponds to the variable y;, then the join on (L;,Y;) is F-F, and at least one of Lj
and Y; is partitioned into T-triangles (otherwise, if both are partitioned into F-triangles, then
y; is false and /1, is true, which is not possible). On the other hand, if the literal ¢;; corre-
sponds to ¥, then the join on (Ljy,Y;) is F-T, and Ljy, is partitioned into T-triangles or Y;
is partitioned into F-triangles, or both (otherwise, if L;j is partitioned into F-triangles and
Y; is partitioned into T-triangles, then both 7; = ¢, and y; are true, which is not possible).

Therefore, the edges of G can be partitioned into triangles. O

136

Appendix B

Other Results from Chapter 5

B.1 Worst-Case Bounds for Identical Utilities

We continue the discussion from Section 5.5 on worst-case bounds, and focus on identical
utilities in this section.

Given n and s, let fiq(n,s) be the smallest integer such that for every instance with n
agents with identical utilities and ns goods and every s-balanced allocation A in the instance,
there exists an EF1 allocation that can be reached from A using at most fiq(n, s) exchanges.

A tight bound for two agents is an immediate consequence of our previous results.
Theorem B.1.1. Let s be a positive integer. Then, fia(2,s) = |s/2].

Proof. The lower bound follows from Theorem 5.5.1, while the upper bound follows from
Theorem 5.5.2. O

For three or more agents, we conjecture that fiq(n,s) is roughly sn/4, like fiq pin(n, s).
However, proving this turns out to be surprisingly challenging. We shall present a result
using a slightly weaker fairness notion in the case of three agents.

We say that agent ¢ is weak-EF1 towards agent j in an allocation A = (Aj,..., A,) if
ui(A;) > ui(A;) — maxgeg ui(g); note the condition g € G as opposed to g € A; for EF1.
An allocation A is weak-EF1 if every agent is weak-EF1 towards every other agent in A.
Weak-EF1 is the fairness notion originally considered by Lipton et al. (2004) (although their
algorithm satisfies EF1), and weak-EF1 and EF1 are equivalent when the utilities are binary.
Since we consider identical utilities, we use w instead of u;. Without loss of generality, we
may divide all utilities by maxgequ(g). Then, the utility of each good is in [0,1], and the
condition for agent i to be weak-EF1 towards agent j is u(A4;) > u(4;) — 1.

Given n and s, let fid(n, s) be the smallest integer such that for every instance with
n agents with identical utilities and ns goods, and every s-balanced allocation A in the
instance, there exists a weak-EF1 allocation that can be reached from A using at most
fia(n, s) exchanges. We shall determine the value of fiq(3, s).

We describe an algorithm 2 that performs a sequence of exchanges of goods starting
from an initial allocation A°. For each t starting from 0, we begin with the allocation
At = (AL . ALY TIf AP is weak-EF1, then we are done and the algorithm terminates.

137

Appendix B: Other Results from Chapter 5

Otherwise, we perform an exchange of goods between two agents to reach the allocation
AL = (AT ABFL). For each agent k, let g and A be a good of the highest utility and
a good of the lowest utility in agent k’s bundle, A%, respectively. Let i; be an agent with the
most valuable bundle, i.e., i; = arg max; y u(A%), and j; be an agent with the least valuable
bundle, i.e., j; = argmingcy u(AZ); we may resolve ties arbitrarily. Note that agent j; is
not weak-EF1 towards agent i;—otherwise, A’ is weak-EF1—and hence i; # j;. We then
exchange gf, with h, to form A" ie., ATF = (AL \{g} })U{R! }, AtJrl (ALN\{RS, HU{g],)
and A',;H = Al for all k € N\ {i1, ji:}. Subsequently, we increment t by 1 and repeat the
procedure.

To establish our result, we prove a series of lemmas on properties of this algorithm.
Lemma B.1.2. Let A" be an allocation which is not weak-EF1. Then, u(g}) > u(h;t).

t t t t t t t .
Proof. 1f u(g;,) < u(hj,), then u(A;,) —1 < u(A4;) < s-u(g;,) < s-ul(hy) < u(4j,), so
agent j; is weak-EF1 towards agent i;, and therefore A’ is weak-EF1, a contradiction. Hence,
u(gf,) > u(hg-t).]

Lemma B.1.3. Let A! be an allocation which is not weak-EF1. Then, in AT,
e agent i; is weak-FEF1 towards every agent; and

o cvery agent is weak-EF1 towards agent j;.
Proof. Let k € N\ {it,ji}. Note that u(A;™) = u(AL).
Since i; = arg max ¢y u(A}), we have

u(AF) = u((AL \ gl D) U RS} > w(A], \ {g},}) > u(4]) — 1> u(A)) -1 =u(AF) -1,

showing that agent i; is weak-EF1 towards agent k.

Similarly, since j; = arg minyc v u(A}), we have
u(A) = u(AL) = u(Aj,) = w((A5 U RS, \ {gi,) = u(AGT\ {gh}) > u(A5F) -1,

showing that agent k is weak-EF1 towards agent j;.
Finally, since agent j; is not weak-EF1 towards agent i;, we have u(A%,) < u(A}) —
Thus,

u(A) = u((A; \ {gl, P U {h5})
A \{gzt})

>u

Q

(A5 U R, D\ {at)
AT {gzt})
At—i—l)

v
<

(
(

(4]
>u(A)
(

(

(

v

U
showing that agent i; is weak-EF1 towards agent j;. O

138

Appendix B: Other Results from Chapter 5

For each t > 0, call i; a strong agent and j; a weak agent. Let I° = J° = &, and for each
t >0, let I**t = I U {i;} be the set of strong agents up to round ¢, and J**1 = Jt U {j;} be

the set of weak agents up to round ¢.

Lemma B.1.4. Let t > 0 be given such that A°, ..., At are not weak-EF1. Then, I*t1 N
JtJrl — Q

Proof. Suppose on the contrary that there exists an agent k such that k € I*™1 N JtT1 Let ¢,
be the smallest index such that k € I*»*1 and tq be the smallest index such that k£ € J tatl,
Then, we have k = i, = ji,. Note that t, # t,, since iy # jp for all ¢'.

Suppose first that ¢, < t,. We show by induction that agent k is weak-EF1 towards every
agent in A"t for all ¢/ € {tp,...,t}. The base case of t' = t, is true by Lemma B.1.3 since
k = iy,. For the inductive step, suppose that agent k is weak-EF1 towards every agent in
AUF1 for some ¢ € {tp,...,t —1}. Then, agent k cannot be jyy;. If agent k is iy4q, then
agent k is weak-EF1 towards every agent in At'+2 by Lemma B.1.3, making the inductive
statement true. If agent k is not éy41, then agent k does not take part in the exchange going
from A+ to A2,

e Agent k is weak-EF1 towards agent ip41 in A'+2 gince agent k is weak-EF1 towards
ipy1 in AY+1 by the inductive hypothesis, and agent iy 1’s utility of her own bundle

decreases after the exchange by Lemma B.1.2.
e Agent k is weak-EF1 towards agent jy1q in AY+2 by Lemma B.1.3.

e Agent k is weak-EF1 towards every other agent in A" *+2 since their bundles did not

change from A! 1,

Overall, these show that agent k is weak-EF1 towards every agent in A" 12, proving the
inductive statement. Since agent k is weak-EF1 towards every agent in A!*! for all ¢ €
{tp,...,t}, agent k can never be j;,. This shows that t, < t, is false.

Therefore, we must have ¢, > t,. The argument for this case is similar to that for the
previous case. We show by induction that every agent is weak-EF1 towards agent & in A? 1
for all t' € {tq,...,t}. The base case of t' = t, is true by Lemma B.1.3 since k = j;, . For
the inductive step, suppose that every agent is weak-EF1 towards agent k in A* 1 for some
t" € {tg,...,t —1}. Then, agent k cannot be iy 1. If agent k is jy41, then every agent is
weak-EF1 towards agent k in A 12 by Lemma B.1.3, making the inductive statement true.
If agent k is not jpy1, then agent k does not take part in the exchange going from AU to

A2,
e Agent iy, 1 is weak-EF1 towards agent k in AY+2 by Lemma B.1.3.

o Agent jy . is weak-EF1 towards agent k in A" 2 since agent jy 1 is weak-EF1 towards
agent k in A+ by the inductive hypothesis, and agent jyy1’s utility of her own bundle

increases after the exchange by Lemma B.1.2.

e Every other agent is weak-EF1 towards agent k in A"*+2 since their bundles did not

change from A1,

139

Appendix B: Other Results from Chapter 5

Overall, these show that every agent is weak-EF1 towards agent k in A2 proving the
inductive statement. Since every agent is weak-EF1 towards agent k in AY*! for all ¢/ €

{tg,...,t}, agent k can never be i;,. This yields the desired contradiction.]
Lemma B.1.5. Lett > 0 be given such that A°, ..., At are not weak-EF1. Then,

o for any i€ It w(AY) > > u(AMY); and

e for any j € JHH u(A?) <. < u(A;-H).

Proof. At every time step ' € {0,...,t}, an agent i € I**! cannot be a weak agent by
Lemma B.1.4. Therefore, agent i either takes part in the exchange from A to AY+1 as a
strong agent iy or does not take part in the exchange. The utility of agent ¢’s bundle either
decreases in the former case due to Lemma B.1.2 or remains the same in the latter case. An

analogous argument holds for j € J*1, 0
Lemma B.1.6. Fach good is not exchanged more than once in algorithm 2.

Proof. Suppose on the contrary that some good ¢ is exchanged more than once. We first
consider the case where g is in a strong agent’s bundle in A° and is exchanged for the first
time at round t, i.e., g = gft. After its first exchange, the good is now with agent j;. By
Lemma B.14, j; ¢ I for any t' > t. Since the good is exchanged again, it must be that

g= h?;/ for some t' > t, where j» = j;. Then, we have

u(Aft,) -1> u(AfZ;,) -1 (by Lemma B.1.5 on iy € IV+1)
> u(Az/t,) (since jy is not weak-EF1 towards iy)
> s-u(g) (since g is the least valuable good in A;;/)
> u(Al) (since g is the most valuable good in Af)
> u(A) =1,

which means that agent j; should have exchanged goods with agent iy at round ¢ instead of
with agent i;. This contradiction shows that a good in a strong agent’s bundle in A° cannot
be exchanged more than once.

Analogously, we now consider the case where ¢ is in a weak agent’s bundle in A° and is
exchanged for the first time at round ¢, i.e., g = h;t. After its first exchange, the good is now
with agent i;. By Lemma B.1.4, i; ¢ Jt for any t' > t. Since the good is exchanged again, it

must be that g = gf;/ for some t' > t, where iy = i;. Then, we have

u(A?t/) < u(Az/t,) (by Lemma B.1.5 on jy € JV'+1)
< u(AZ,) -1 (since jy is not weak-EF1 towards iy)
<u(Al)
< s-u(g) (since g is the most valuable good in AZ,)
< u(Az-t), (since g is the least valuable good in A;t)

140

Appendix B: Other Results from Chapter 5

which means that agent ¢; should have exchanged goods with agent jy at round ¢ instead
of with agent j;. This contradiction shows that a good in a weak agent’s bundle in A° also

cannot be exchanged more than once. O
Lemma B.1.7. Algorithm 2 terminates in finite time.

Proof. Since each good is not exchanged more than once by Lemma B.1.6, at most [m/2]

pairs of goods can be exchanged, and the algorithm terminates by round |m/2]. O

Since the algorithm terminates in finite time by Lemma B.1.7, there exists T > 0 such
that A°,..., AT are not weak-EF1 but A7*! is weak-EF1. Let I = IT*! be the set of strong
agents and J = JTT! be the set of weak agents. By Lemma B.1.4, I and J are disjoint
sets of agents. Therefore, at each round ¢ € {0,...,T} of the algorithm, some agent i; € I
exchanges a good with some agent j; € J.

We derive a bound on the number of steps that 2 takes in the case of two agents.

Lemma B.1.8. For n = 2 agents with s goods each, algorithm 2 terminates after at most
|s/2] rounds.

Proof. The statement is clear when s = 1, so we assume that s > 2. Suppose on the contrary
that after T = |s/2] rounds, the allocation AT is still not weak-EF1. Without loss of
generality, assume that 1 € I and 2 € J. Then, the most valuable |s/2] goods from agent
I’s bundle A are exchanged with the least valuable |s/2] goods from agent 2’s bundle A9
to reach AT. Let By C A and By C A9 be the sets of goods from the respective bundles
that are exchanged between the two agents, and let C = A(1) \ By and Cy = Ag \ Bs2. Note
that all these sets are disjoint by Lemma B.1.6. Let g be any arbitrary good in C, and let
C1 = C1\{g}. We have [Bi1| = [By| = [5/2], [C1] = |C2| = [5/2], and |C]| < [s/2].

Now, u(Bj) > u(C}) since the goods with the highest values from A{ are exchanged and
By has at least as many goods as C. Also, u(Cy) > u(Bz2) since the goods with the lowest

values from A9 are exchanged and C3 has at least as many goods as Bs. Therefore, we have
u(A3) = u(B1 U Cy) > u(Cl U Bs) = u(AT \ {g}) > u(AT) — 1,

which shows that agent 2 is weak-EF1 towards agent 1 in A”. On the other hand, agent 1
is also weak-EF1 towards agent 2 in A7 due to Lemma B.1.3 applied on AT ~!. This shows
that A7 is weak-EF1, a contradiction. O

We now come to our main lemma, which bounds the number of steps that 2 takes for

three agents. For convenience of the analysis, we focus on the case where s is divisible by 3.

Lemma B.1.9. Let s be a positive integer divisible by 3. For n = 3 agents with s goods each,

algorithm 2L terminates after at most 2s/3 rounds.

Proof. Suppose on the contrary that after T = 2s/3 rounds, the allocation A” is still not

weak-EF1. Note that T > 0, so I7,J1 # @. If |IT| = |JT] = 1, then after at most
|s/2] rounds, the agent i € I” and the agent j € J7 are weak-EF1 towards each other by

Lemma B.1.8, while the agent k € N \ {7,j} is weak-EF1 towards everyone and vice versa

141

Appendix B: Other Results from Chapter 5

since agent k does not partake in the exchanges. Since |s/2] < 2s/3, the allocation A”'
is weak-EF1 for some 7" < 2s/3, contradicting our assumption. Therefore, we must have
I"uJt =N.

Case 1: |[IT| = 1. We consider the allocation AT relative to .A°. Without loss of
generality, let 1 € I7. Let Bi2 C AY and By C A be the sets of the goods in the respective
bundles that are exchanged between agents 1 and 2, B3 C A(l) and Bz C Ag be the sets
of the goods in the respective bundles that are exchanged between agents 1 and 3, and let
Cp = A9\ (Bi2UBy3), Cy = A9\ By, and C3 = Ag \ Bs. Note that all these sets are disjoint
by Lemma B.1.6. Let z = |Bj2| = |Bz| and y = |By 3| = |B3|. We have z +y = 2s/3,
|Ca] = s —uz, |C3] = s—y, and |[C1] = s —z —y = s/3. Without loss of generality, let
x > y. Note that < s/2, since otherwise agent 2 will be weak-EF1 towards agent 1 by
Lemma B.1.8 and does not need to exchange more goods with agent 1.

In A% we have A = Bis U B3 UCh, A} = BoUCy, and Ay = B3U C3. In AT we
have A{ =B, UB3UCY, AQT = B1pUC(C>, and A3T = By 3 U (3. Since the algorithm always
exchanges the most valuable goods from agent 1’s bundle and the least valuable goods from
agent 2’s and agent 3’s bundles, we have u(B12)/x > u(C1)/(s/3), w(B13)/y > u(C1)/(s/3),
u(Cq)/(s—z) > u(Bg)/z, and u(C3)/(s—y) > u(Bs)/y. By Lemma B.1.2, we have u(Bj 2) >
u(B2) and u(B13) > u(Bs).

Since x > y, we have s/3 <z < s/2 and hence s/6 <y < s/3. Let « = (6x—s)/(3z+s) =
2—-3s/(3x+s)=2—s/(s—y). Since s/3 <z < s5/2, we have 1/2 < o < 4/5.

Let ag = a(s—z)/x and a3 = (1 —a)(s—y)/y. Since 1/3 < z/s < 1/2, we have a > z/s,
which implies that ag = a(s — x)/z = as/r — a > 1 — a. On the other hand, the derivative

of as = a(s — z) /2 with respect to is
(gili) (-32) ((3ng 3)2) (S;JE) - (33(3:65+ s)> (S;&T * 938x_+9§>
:< s) ((s+9x)(s—3x)>_

z(3x +) z(3x + s)

When the derivative of aip with respect to x is equal to 0, we get x = —s/9 or x = s/3. It can

be verified that ay attains a local maximum at x = s/3. For x € [s/3,5/2], the maximum

value of a is hence equal to 1 at x = s/3. Together, we have 1 —a < ag < 1.

az=(1-a)2"Y = <1—(2— i))S_y:_s_y+5:1_
y s—y y y oy

We shall show that au(AL) + (1 — a)u(AL) > u(AT). We have

Now,

au(ALYY + (1 — a)u(AD)

= Oé(U(Bl,Q) +u(Cy)) + (1 — a)(u(BLg) + u(C3))

> au(B12) + O‘(Sx"””)u(BQ) + (1 —a)u(B13) + My(sy)u(Bg)
= au(BLg) + OéQU(BQ) + (1 — a)u(BLg) + Oégu(Bg)

142

Appendix B: Other Results from Chapter 5

(a +ag —1 U(Bl 2) + (1 — ag)u(Bl,g) + Oégu(BQ) + (1 — OJ)U(BL;J,) + U(Bg)

)

> (a +ag —1 U(Bl 2) + (1 — ag)u(Bg) + agu(Bg) + (1 — a)u(BLg) + u(Bg)

)

)
)

a + ag — 1>U(Bl 2) + U(BQ) + (1 — a)u(BLg) + U(Bg)
)

)

u(C1) + u(B) + (1~ a) Lu(Ch) + u(By)

>(a+ay—1 £
S

w

= - ((a+a2)z —z+ (1 — a)y) u(C1) + u(Bz2) + u(Bs3).

»

Since asr = a(s — z) implies (o + ag)r = as and y = azy = (1 — «a)(s — y) implies
(1—a)y = (1—a)s—y, the expression (a+a2)x—x+(1—a)y simplifies to as—z+(1—a)s—y,
which gives s — z — y. Using the fact that = + y = 2s/3, the expression simplifies to s/3.
Therefore,

au(AT) + (1 — a)u(AT) > (g) w(Ch) + u(B) + u(Bs)

(C1) +u(B2) + u(Bs)

Let j € argmaxeq 2 33 u(A}). Since au(A3)+(1-a)u(A3) > u(A7) for some a € (0,1),
we may assume that j € J7. Suppose without loss of generality that j = 2. Note that agent 2
is weak-EF1 towards every other agent in A”. Agent 1 is weak-EF1 towards every other agent
in AT by Lemma B.1.3. Let t < T be the round that agent 2 exchanges a good with agent 1
for the final time, i.e., agent 2 exchanges a good with agent 1 going from A* to A**!. Then,
by Lemma B.1.3, agent 3 is weak-EF1 towards agent 2 in A'*!. Since the utility of agent 3’s
bundle does not decrease thereafter and agent 2’s bundle remains the same thereafter, agent
3 is weak-EF1 towards agent 2 in A”. Then, agent 3 is weak-EF1 towards every other agent
in AT, This shows that A7 is weak-EF1, contradicting the original assumption.

Case 2: |[IT| = 2. We consider the allocation A” relative to .A°. Without loss of
generality, let 1 € JT. Let By C A(1) and By C Ag be the sets of the goods in the respective
bundles that are exchanged between agents 1 and 2, By 3 C A9 and B3 C Ag be the sets
of the goods in the respective bundles that are exchanged between agents 1 and 3, and let
Cp = A9\ (Bi2UBy3), Cy = A9\ By, and C3 = Ag\Bg. Note that all these sets are disjoint
by Lemma B.1.6. Let © = B3| = |B2| and y = |By3| = |B3|. We have z +y = 2s/3,
|Ca] = s —z, |C3] = s—vy, and |[C1] = s — 2z —y = s/3. Without loss of generality, let
x > y. Note that z < s/2, since otherwise agent 1 will be weak-EF1 towards agent 2 by
Lemma B.1.8 and does not need to exchange more goods with agent 2.

In A°, we have A(f = B12UB;3UC(Ch, Ag = By UCy, and AY = B3 UC3. In AT, we
have A{ = By, U B3 U(h, A2T = B12U (>, and A?,: = B13U (3. Since the algorithm always
exchanges the least valuable goods from agent 1’s bundle and the most valuable goods from
agent 2’s and agent 3’s bundles, we have u(B12)/x < u(C1)/(s/3), u(B13)/y < u(Ch)/(s/3),
u(Cq)/(s—z) < u(Bg)/z, and u(C3)/(s—y) < u(Bs)/y. By Lemma B.1.2, we have u(Bj 2) <
u(B2) and u(B;3) < u(Bs).

Since z > y, we have s/3 < x < s/2. Let a = (6x — s)/(3z +s) =2 —3s/(3z + s) =
2—5/(s—y), aa =a(s—z)/x, and ag = (1 — a)(s —y)/y. By the same reasoning as in Case

143

Appendix B: Other Results from Chapter 5

1, we have 1/2<a<4/5,1—a<ay <1, and ag = 1.
We shall show that au(AL) + (1 — a)u(AL) < u(AT). We have

au(ALY + (1 — a)u(AD)
= a(u(Bl,g) +u(Cy)) + (1 — a)(u(BLg) + u(C3))

MU(B2) +(1—a)u(Bis) + (A -a)(s—y)

< OéU(Bl,Q) + ”

u(Bs)

au(31 2) + OéQ’LL(BQ) + (1 — a) (Bl 3) + Oégu(Bg)

(Oé —+ ao — 1) (2) + (1 — OéQ) (BLQ) + OéQU(BQ) —+ (1 — OZ)U(BL:),) + U(Bg)
< (a+ag — Nu(Br2) + (1 — ag)u(B2) + aru(Bz2) + (1 — a)u(B13) + u(B3)
= (a+ a2 — Nu(B1,2) + u(B2) + (1 — @)u(B13) + u(Bs)

)

L)+ u(B) + (1~ 0) Lu(Ch) + u(By)

<(a+ay—1
3
S

((a+a2)z —z+ (1 - a)y)u(Cr) + u(Bz2) + u(Bs).

By the same reasoning as in Case 1, we have (o + az)r — x + (1 — o)y = s/3, and therefore,
cu(A) + (1 - a)u(AT) < u(A7).

Let i € argmingc(y 23 u(AL). Since au(AL) +(1—a)u(AL) < u(AT) for some a € (0,1),
we may assume that i € I”. Suppose without loss of generality that i = 2. Note that every
agent is weak-EF1 towards agent 2 in A”. Every agent is weak-EF1 towards agent 1 in A7
by Lemma B.1.3. Let ¢t < T be the round that agent 2 exchanges a good with agent 1 for
the final time, i.e., agent 2 exchanges a good with agent 1 going from A to A**!. Then, by
Lemma B.1.3, agent 2 is weak-EF1 towards agent 3 in AT!. Since the utility of agent 3’s
bundle does not increase thereafter and agent 2’s bundle remains the same thereafter, agent 2
is weak-EF1 towards agent 3 in \A”. Then, every agent is weak-EF1 towards agent 3 in A7 .
This shows that A’ is weak-EF1, contradicting the original assumption. O

We are now ready to show the result on fid(n, s) for three agents.
Theorem B.1.10. Let s be a positive integer divisible by 3. Then, fia(3,s) = 2s/3.

Proof. The lower bound of fiq(3,s) follows from Theorem 5.5.1note that weak-EF1 and

EF1 are equivalent for binary utilities. The upper bound follows from Lemma B.1.9. O

B.2 Beneficial Exchanges

Let us say that an exchange is beneficial if the two agents involved in the exchange strictly
benefit from the exchange, i.e., if the goods g € A; and ¢’ € A; are exchanged, then u;(g') >
ui(g) and u;j(g) > w;(¢’). In this section, we investigate the decision problem of whether a
given initial allocation can be reformed into an EF1 allocation using only beneficial exchanges.
For convenience, we refer to this problem as BENEFICIAL EXCHANGES.

We show that BENEFICIAL EXCHANGES is NP-complete, even for binary utilities, using
a reduction from MINIMUM k-COVERAGE. In MINIMUM k-COVERAGE, we are given positive
integers k,¢,p,q such that k¥ < ¢ and ¢ < p, a set X = {x1,...,24}, and a collection

144

Appendix B: Other Results from Chapter 5

C = {Y1,...,Y,} of subsets of X. The problem is to decide whether there exists a set
I C{1,...,p} of indices such that [I| = £ and || J,;c; Yi| < k. This decision problem is known
to be NP-hard (Vinterbo, 2002).

Theorem B.2.1. BENEFICIAL EXCHANGES is NP-complete for binary utilities.

Proof. For membership in NP, observe that in a sequence of beneficial exchanges for binary
utilities, each good g € G can only be part of at most one exchange. Indeed, if good g is
part of at least two beneficial exchanges, then it must be received by some agent i (and hence
worth 1 to i) and be given away by agent ¢ (and hence worth 0 to i), which is impossible.
Therefore, such a sequence consists of at most m /2 exchanges, and can be used as a certificate
for polynomial-time verification.

It remains to show that the problem is NP-hard. Let an instance of MINIMUM k-
COVERAGE be given. Define an instance of BENEFICIAL EXCHANGES as follows. There
are n = 2p + g + k — £ agents and m = 2n goods. We shall label the agents a11,...,a14,
215,02 ks A315---,03,p, G41,---,04p—¢; We use u; ; for the utility of agent a; ;. For each
agent a; ;, there are two goods gg ; and gi{j that are both in agent a; ;’s bundle in the initial

allocation. The valuable goods for the agents are as follows:

e Forie{l,...,q}, uu(g%’j) =1for all j € {1,...,k}. Additionally, if z; € Y; for some
j€{1,...,p}, then Ul,i(gg,j) = ul,i(g?ij) =1.

o Forie{l,....k}, ugi(g1,;) = 1forall je{1,...,q}.
e Forie{l,...,p}, U3’i(gij)zlforallje{l,...,p—ﬁ}.
e Forie{l,...,p—/{}, u4,i(g§,j):1for all j € {1,...,p}.

All other goods not mentioned above are worth 0 to the respective agents. This reduction
can be done in polynomial time.

In the initial allocation, every agent has zero utility for her own bundle, and the only
agents who are possibly not EF1 are agents a1 ;, who envy a3 ; if z; € Y;. By construction,
the only possible beneficial exchanges are between gii in agent a1 ;’s bundle and gij in agent
az j’s bundle, or between géi in agent as;’s bundle and gi ; in agent a4,;’s bundle.

We claim that the initial allocation can be reformed into an EF1 allocation via only
beneficial exchanges if and only if there exists a set I C {1,...,p} of indices such that |I| = ¢
and |Ue; Yil < k.

(<) Suppose that there exists a set I C {1,...,p} of indices such that |I| = ¢ and
Ui Yil < k.

o Let I'={1,...,p}\I. Since |I'| = p—¥, there exists a bijection o : I' = {1,...,p—{}.
For each i’ € I, exchange g% » in agent as;’s bundle with gi (i) in agent ay ,(;)’s
bundle.

o Let J = {j|x; €Uy Y} Since |J| <k, there exists an injection ¢ : J — {1,...,k}.

For each j € J, exchange gij in agent a; ;’s bundle with g% () in agent ag 4(;)’s bundle.

145

Appendix B: Other Results from Chapter 5

We now show that the new allocation is EF1. It is easy to see that the allocation is EF1 for
agents ag;, az;, and a4, since every other agent has at most one of their valuable goods.

Therefore, it suffices to show that the allocation is EF1 for agents a1 ;.

e If j € J, then agent a;; has the valuable good g% 8(5) in her bundle, so her utility of
her own bundle is at least 1. Since her utility of every other agent’s bundle is at most

2, agent ap; is EF1 towards every other agent.

o If j & J, then z; ¢ (J;c; s, and so x; ¢ Y for all i € I. Note that the valuable
goods for a; ; are possibly in the form 9%@ gg,i, and g?l)l Suppose on the contrary
that a;; is not EF1 towards some agent. This agent must have two such goods in
the final allocation. The only way for this to happen is when there exists ¢* such that
agent asz;« has both ggi* and g:)l,’i*. This means agent a3 ;+ had not exchanged any
goods, and so ¢* ¢ I'. This implies that ¢* € I. Since x; ¢ Y; for all i € I, we must
have u; j (ggji*) =uy;j (gél*) = 0. This contradicts the assumption that a; ; is not EF1

towards agent ag;+. Therefore, a1 ; is EF1 towards every agent.

(=) Suppose that the initial allocation can be reformed into an EF1 allocation via only
beneficial exchanges. Consider one such sequence of beneficial exchanges. Let I’ C {1,...,p}
be the set of all indices ¢’ such that agent a3 ; exchanged a good with another agent in this
sequence. Since ag; can only exchange a good with some a4 ;» once, and there are only p — ¢
agents of the form a4 ;/, we have |I'| < p — {. Therefore, Iy := {1,...,p} \ I’ has cardinality
at least ¢, and Iy contains indices ¢ such that agent a3; retains her original bundle from the
initial allocation.

We claim that | J;cz, Yil < k. Let J C {1,..., g} be the set of all indices j such that agent
a1,; exchanged a good with another agent in this sequence. Since a; ; can only exchange a
good with some ag j» once, and there are only k agents of the form ag j», we have |J| < k.
Therefore, J' := {1,...,q} \ J has cardinality at least ¢ — k, and J’ contains all indices j’
such that agent a; j retains her original bundle from the initial allocation; these agents have
utility 0. Since the final allocation is EF1, these agents do not envy agents az; by more
than one good for each i € Iy. Therefore, we must have uy j(g3;) = u1,5(g3,) = 0, which
implies that zj ¢ Y; for all j € J' and i € Ip. This means that z; ¢ [,
Y;, which shows that (J,. 1 Yi

Y, for every
j" € J'. Therefore, at least ¢ — k of the x;’s are not in (J;cp,
has cardinality at most ¢ — (¢ — k) = k, as claimed.

Finally, take any subset I C I with cardinality £. The proof is completed by noting that

Uier Yi € Uier, Yi- O

While we have shown that a sequence of beneficial exchanges must be of polynomial
length for binary utilities, the same statement in fact holds for general utilities. Indeed, for
any sequence of beneficial exchanges, for each good ¢, in some agent i’s initial bundle, it is
exchanged with another good g;,, which is subsequently exchanged with another good g,
and so on, until some g, in agent 4’s final bundle. Since we must have u;(gs,) < -+ < u;i(gz,)
due to the exchanges being beneficial, it must hold that k& < m, and so there are at most m—1

exchanges starting from g¢,. Since there are m goods in total and each exchange involves

146

Appendix B: Other Results from Chapter 5

two goods, the maximum number of exchanges in the sequence is m(m — 1)/2. Hence, by

Theorem B.2.1, we have NP-completeness for general utilities as well.

147

Appendix C

Appendix for Chapter 6

C.1 Left-Marks and Right-Marks

Our results assume that algorithms have access to eval and right-mark queries in the Robert-
son-Webb model. We show that our results also hold if algorithms have access to eval and
left-mark queries.

For each agent i € N, value r € [0,1], and point € C, define left-mark such that
LEFT-MARK;(x,r) is the leftmost (smallest) point z € C such that u;([x, z]) = r (such a
point exists due to the continuity of the valuations); if u;([z, 1]) < r, then LEFT-MARK;(z,)
returns co. We define RIGHT-MARK;(z,) to be the same as MARK;(x,r) in Section 6.2, but
use “right-mark” in this section to avoid confusion with left-mark. Note that for a hungry
agent ¢, LEFT-MARK;(z,r) = RIGHT-MARK;(z,r) for all x € C,r € [0, 1].

Let Z be an instance with n agents with valuation functions (u;);eny and entitlements w.
A mirrored instance I of T is the instance with n agents with valuation functions (u;)ien
and entitlements w such that u;([z,y]) = wi([1 —y,1 — z]) for all z,y € C with z < y. In
other words, the cake in 7 is “mirrored” from the cake in Z. A class of instances C is closed
under marror if Z € C implies that TecC.

Note that the classes of instances we consider in our results are closed under mirror.
We now show that if there is an algorithm, having access to right-mark queries, that can
determine the existence of a connected strongly-proportional allocation in a class of instances
closed under mirror, then there exists another algorithm, having access to left-mark queries,
that can also do the same in the same class of instances. Furthermore, the number of queries
made by the new algorithm is within a factor of 2 from the number of queries made by the
old algorithm. This shows that our results hold in whichever model of Robertson-Webb, and

the use of right-mark is only for convenience.

Proposition C.1.1. Let C be a class of instances closed under mirror. Suppose there exists
an algorithm A such that for each instance in C, algorithm A can determine the existence of a
connected strongly-proportional allocation in the instance using at most k eval and right-mark
queries and using no left-mark queries. Then, there exists an algorithm B such that for each
instance in C, algorithm B can determine the existence of a connected strongly-proportional

allocation in the instance using at most 2k eval and left-mark queries and using no right-mark

148

Appendix C: Appendix for Chapter 6

queries.

Proof. Let Z be an instance in C in which we wish to determine the existence of a connected
strongly-proportional allocation using eval and left-mark queries and using no right-mark
queries. By assumption, there exists an algorithm 2 that can determine the existence of a
connected strongly-proportional allocation in 7 using at most k eval and right-mark queries
and using no left-mark queries.

Our algorithm 95 simulates algorithm 20 on Z as follows:

e Case 1: 2 makes an EVAL;(z,y) query on 7.
Then, algorithm % makes an EVAL;(1 —y,1 — z) query on Z.

e Case 2: 2 makes a RIGHT-MARK;(z,r) query on Z.
Then, algorithm % makes a LEFT-MARK; (0, EVAL;(0,1 — z) — r) query on Z.

Let us verify that the two implementations are identical.

e Suppose r = EVAL;(,y) on Z. Then, EVAL;(1—y, 1—z) on Z is equal to u;([1—y, 1—x]),

which is equal to u;([z,y]) = 7.

e Suppose y = RIGHT-MARK;(x, 7) on Z. Then, since the value of EVAL;(0,1—x) on T is
equal to u;([0,1—z]) and LEFT-MARK; (0, k) on Z is equal to 1 —RIGHT-MARK; (0, 1 —k)
on Z for any k € [0,1], LEFT-MARK;(0, EVAL;(0,1 — x) — 7) on Z is equal to 1 —
RIGHT-MARK; (0,1 — (1;([0,1 — z]) — 7)) on Z. But 1 —u;([0,1 — z]) = 1 —u([z, 1]) =
([0, z]), which means that the result is equal to 1 — RIGHT-MARK;(0, %;([0, z]) + r).
This is equal to 1 — RIGHT-MARK;(z,r) = 1 — y, which is the mirrored point of y.

This shows that if algorithm %I determines the existence of a connected strongly-proportional
allocation on i, then B determines the existence of a connected strongly-proportional allo-
cation on Z. Note that algorithm 95 makes at most two times the number of queries that 2

makes. O

C.2 Proportionality

With unequal entitlements, even a connected proportional allocation may not exist. Algo-
rithm 6.3 can be modified to determine the existence of a connected proportional allocation
for agents with unequal entitlements (and to output one if it exists) by using left-marks

instead of right-marks.

Proposition C.2.1. Algorithm C.1 decides whether a connected proportional allocation exists

for n agents using at most n - 2"~ 1 queries.

We remark that our algorithm is similar to that in Aumann et al. (2012, Theorem 4)
where they find an approximate optimum egalitarian welfare on a piece of cake—here, we

extend it to agents with possibly unequal entitlements.

149

Appendix C: Appendix for Chapter 6

Algorithm C.1 Determining the existence of a connected proportional allocation for n
agents.

1: bg%O
2: fork=1,...,ndo
3: for each subset N’ C N with |[N'| = k do

4: by ¢ 00

5: for each agent i € N’ do

6: y + LEFT-MARK; (bnn\ (3}, W)

7: if y <bpns then by <y > this finds the “best” by
8: end for

9: end for

10: end for

11: if by < 1 then return true else return false

150

Appendix D

The Divide Algorithm in Chapter 7

In this section, we describe the algorithm D1vIDE (Algorithm D.1), which takes as input a
connected subgraph H worth [y to some agent in N’ C N, a positive threshold 8 < 3y, and
a root vertex r of H. The output of DIVIDE satisfies the conditions stated in Lemma 7.2.1.

We will work with rooted trees. Let T'= (V, E) be a rooted tree. For a vertex v € V, let
S, be the subtree at v, that is, .5, is the subgraph induced by v and all of its descendants in
T'. For a child vertex w of v, let S, ,, be the subgraph induced by v, w, and all descendants
of win T.

We begin by converting the graph H into a tree (Lines 1 to 8). As long as H contains
a cycle, select an edge [v1,v9] belonging to the cycle, add a new vertex v}, and replace the
edge [v1,ve] with the edge [v1,v5] while keeping the remaining edges of the graph. Note
that the new edge created should have the same value to each agent as the one it replaces.
This procedure decreases the number of cycles in the graph by at least one. Therefore, by
repeating this procedure, H eventually becomes a tree. Note that any connected share of
this tree corresponds to a connected share in the original graph with the same value for every
agent.

We now split the tree H into two subtrees Hy and Hs (Lines 9 to 25). To do so, traverse
the tree from the root vertex r until some vertex v is reached such that the subtree S, is
worth at least 3 to some agent in N’, while the subtree S, at each child vertex w of v is
worth less than 3 to all agents in N’. Since S, is worth at least 5 to some agent while S, is
worth 0 to all agents for every leaf vertex z, there must be some vertex v where the condition

holds. We consider two cases.

e Case 1 (Lines 14 to 17): There exists an agent i € N’ and a child vertex w
of v such that u;(S,,,) > 5.
Let w* be one such child vertex. By assumption, the subtree S, is worth less than
to all agents. Find the point « € [w*,v] closest to w* such that S, ,, is worth exactly
B to some agent i* and at most [to all other agents. (Here we abuse notation slightly
and treat = as a vertex.) Let S, be the first share, and the remaining portion of H
be the second share. Note that a new vertex x € [w*,v] is created and belongs to both

shares. The first share is worth £ to some agent and at most 8 to every agent.

e Case 2 (Lines 19 to 24): For all agents i € N’ and all child vertices w of v,

151

Appendix D: The Divide Algorithm in Chapter 7

Algorithm D.1 Divipe(H, N', 3,7).

Input: Connected subgraph H, set of agents N’, threshold 5 € (0, Sy] where Sy = u;(H) for
some 7 € N', vertex r of H.
Output: Graphs H; and Hs.

W W N N DN NN DN DN DN DN DN DN H o e =
e A e A e I A R S

: L < @& (a list of vertices)
while there exists a cycle in H do
[v1,v2] < any edge on the cycle
add a new vertex v} to the graph
append v} to L
[v1, V5] 4= [v1, 2]
delete edge [v1,v2] from the graph
end while (this converts H into a tree)
v T
while there exists ¢« € N” and a child vertex w of v such that u;(S,) > 3 do
v < any child vertex w of v with u;(Sy) >
: end while (Sy is worth at least 3 to some agent)
: if there exists ¢ € N’ and a child vertex w of v such that u;(S,,.) > 8 then
w* <— any child vertex w of v with u;(Syw) > B

Hy + S:E,w*
Hy <+ H \ H; (add the point x to Hs)
. else
C < @ (alist of child vertices of v)
while Y~ -~ u;i(Syw) < B for all i € N’ do
add to C any child vertex of v that is not yet in C
end while
Hy « UwEC SUﬂU
Hy < H\ H; (add the point v to Ha)
. end if
: while L # @ do
reverse lines 3 to 7 based on the last element of L
remove from L its last element
adjust H; and Hy accordingly
: end while (this converts the graph back to the original H)
: return (Hy, Hy)

x < the point in [w*,v] closest to w* such that there exists i € N’ with u;(Sy

) =5

we have u;(S,) < f.

Initialize H; to be a graph with only vertex v. For each child vertex w of v, iteratively
add S, to Hy until Hy is worth at least 5 to some agent ¢*. Let H; be the first share,

and the remaining portion of H be the second share. Note that the vertex v belongs to

both shares. The first share is worth at least 5 to some agent and less than 273 to all
agents, because H; is worth less than /3 before the last S, ,, is added, and the last S, ,,

is also worth less than 3, so their combined value is less than 25 to every agent.

Lastly, we convert the tree back to the original graph (Lines 26 to 30). This is done

simply by reversing the steps taken to convert the original graph into a tree. Along the way,

we also adjust the two shares accordingly. At each step, each of the two shares is connected

since the vertices that are removed are always leaf vertices.

152

	Declaration
	Summary
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Resources
	Measure of Value
	Fairness
	Roadmap of This Thesis
	Bibliographic Notes

	Preliminaries
	General Setting
	Indivisible Goods
	Divisible Goods

	I Indivisible Goods
	Extending the Characterization of Maximum Nash Welfare
	Introduction
	Preliminaries
	Result for Continuous Welfare Functions
	Result for Non-Continuous Welfare Functions
	Conclusion

	Reachability of Fair Allocations via Sequential Exchanges
	Introduction
	Our Results

	Preliminaries
	Two Agents
	Three or More Agents
	General Utilities
	Identical Binary Utilities
	Binary Utilities
	Identical Utilities

	Conclusion

	Reforming an Unfair Allocation by Exchanging Goods
	Introduction
	Our Results
	Related Work

	Preliminaries
	Reformability of Allocations
	Two Agents
	Constant Number of Agents
	General Number of Agents

	Optimal Number of Exchanges
	Two Agents
	Constant Number of Agents
	General Number of Agents

	Worst-Case Bounds
	Identical Binary Utilities
	General Utilities

	Conclusion

	II Divisible Goods
	On Connected Strongly-Proportional Cake-Cutting
	Introduction
	Our Results
	Further Related Work

	Preliminaries
	Hungry Agents
	Equal Entitlements
	Possibly Unequal Entitlements

	General Agents
	Upper Bound
	Lower Bound

	Stronger than Strongly-Proportional
	Pies
	Conclusion

	Approximate Envy-Freeness in Graphical Cake Cutting
	Introduction
	Our Results
	Further Related Work

	Preliminaries
	Possibly Non-Identical Valuations
	General Graphs
	Star Graphs

	Identical Valuations
	4-EF
	(2 + eps)-EF
	Star Graphs

	Beyond One Connected Piece
	Conclusion

	Bibliography
	NP-Hardness of Directed Triangle Partition in Chapter 4
	Other Results from Chapter 5
	Worst-Case Bounds for Identical Utilities
	Beneficial Exchanges

	Appendix for Chapter 6
	Left-Marks and Right-Marks
	Proportionality

	The Divide Algorithm in Chapter 7

